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Calculation of the anomalous exponents in the rapid-change model of passive scalar advection
to order &3
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The field theoretic renormalization group and operator product expansion are applied to the model of a
passive scalar advected by the Gaussian velocity field with zero mean and correlation funéion
—t")/k%**. Inertial-range anomalous exponents, identified with the critical dimensions of various scalar and
tensor composite operators constructed of the scalar gradients, are calculated withexgignsion to order
&2 (three-loop approximatignincluding the exponents in anisotropic sectors. The main goal of the paper is to
give the complete derivation of this third-order result, and to present and explain in detail the corresponding
calculational techniques. The character and convergence properties ef éRpansion are discussed, the
improved “inverse” e expansion is proposed, and the comparison with the existing nonperturbative results is
given.
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[. INTRODUCTION In the real problem, the fiel#(x) satisfies the Navier-
Stokes equation. In the rapid-change model it obeys a Gauss-
The investigation of intermittency and anomalous scalingan distribution with zero mean and correlation function
in fully developed turbulence remains essentially an open
theoretical problem. Both the natural and numerical experi-
ments suggest that the deviation from the classical Kolmog-
orov theory[1] is even more strongly pronounced for a pas-
sively advected scalar field than for the velocity field itself;
see, e.g., Refl2] and literature cited therein. At the same
time, the problem of passive advection appears more easily
tractab'le theoretic‘?lly: eve'n”simplifi'ed models ldescribqng thehere Py (K)= & —kik; /K? is the transverse projectok
advect_lon by a synthetic” velocity field with a given =|k|, Do>0 is an amplitude facto is the dimensionality
Gaussian statistics reproduce many of the anomalous fe%T the x space® (- - -) is the step function, and-0s <2 is
tures of genuine turbulent heat or mass transport observed parameter with the re&tolmogorov” ) value s = 4/3.

experiments. Therefore, the problem of passive scalar advec- The infrared(IR) regularization is provided by the cutoff

tlpn, télemg of pt)ratc_:tlcal |m[t)qrtan::ed in |ts_eI:‘, mf”t‘%/ also bedin the integral(1.3) from below atk=m, wherem=1/ is the
viewed as a starting point in studying intermittency an reciprocal of another integral scale The anomalous expo-

anomalous scaling in the turbulence as a whole. Detailed | i< 7o independent of the precise form of the IR regular-

review of the recent theoretical research on the passive Scalﬁration' the sharp cutoff is the most convenient choice from
problem and the bibliography can be found in Hél. the calculational viewpoints. In what follows, we shall not

Most progress has been achieved for Kraichnan's rapid; .. . : :
change mode[4]: for the first time, the anomalous expo- distinguish the two IR scales, settihg-1. The relations

nents _ha_ve been derived on f[he t_)asis of a microscopic model Do/vo=go=A* (1.4
and within controlled approximatiori&—8].

In that model, the advection of a passive scalar fielddefine the coupling constam, (i.e., the formal expansion

<vi<x>v,-<x'>>=Doa(t—w(zm*df dkPy (k)N
xexdik-(x—=x")],

N,=0(k—m)k 97, 1.3

6(x)=6(t,x) is described by the stochastic equation parameter in the ordinary perturbation theoand the char-
acteristic ultraviole{UV) momentum scalé\ .
V.0=ved?0+f, V=009, (1.7 The issue of interest is, in particular, the behavior of the

equal-time structure functions
where 9,=4d/dt, d,=dldx;, vy is the molecular diffusivity _ N
coefficient,d? is the Laplace operatow(x)={v;(x)} is the Sn(r)=([6(t.x)— 6(tx)]") 19
transverse(owing to the incompressibilijy velocity field,
and f=f(x) is an artificial Gaussian scalar noise with zero
mean and correlation function

in the inertial-convective rang&>1/r>m.

In the isotropic mode(1.1)—(1.3), the odd multipoint cor-
relation functions of the scalar field vanish, while the even
equal-time functions satisfy linear partial differential equa-

(FOOf(x"))=a8(t=t")C(r/L), r=x=x".. (1.2  tions[4—6]. The solution for the pair correlation function is
obtained explicitly; it shows that the structure functiSp
The parametek is an integral scale related to the noise andecr2~ is finite atm= 0 [4]. The higher-order correlators are
C(r/L) is some function finite ak—oo. not found explicitly, but their inertial-range behavior can be
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extracted from the analysis of the nontrivial zero modes of *

the corresponding differential operators in the limits>0 Ag=2, Ak (1.10
[5,7], 1/d—0 [6], or e—2 [7,8]. It was shown that the even k=1

structure functions in the inertial-convective range exhibit

Sa(r) =Dy "= (mr)an, r=|x—x'|  (1.6) A= ”(”_2)+(d+1)'(d+'_2)_ (1.11)
20d+2) " 2(d—1)(d+2)

with negative anomalous exponents, whose first terms of

the expansion i [5] and 14 [6] have the forms For I =0 this gives the result of5], while for n=3 and|
=1,3 the results of Ref$7] are recovered. The result.11)
A= —n(n—2)e/2(d+2)+0(2)= —n(n—2)e/2d was rederived later in Ref§162,1ﬂ.
, The coefficients\ (2) andA{2) were obtained in Ref10]
+0(1/d9). (1.7 for anyn andd; the result for generdlis presented if14].

In particular, one has
Another quantity of interest is the local dissipation rate of
scalar fluctuationsE(x) = vyd;0(x)d;0(x). The equal-time Agfl)z n(n—2)(0.000 208 —0.029 76 —1%(0.017 3
correlation functions of its powers in the inertial range have
the forms[5,6], +0.01223 (1.12a3

(E"(X)EP(X"))oc(Ar)~A2n~A2p(mr)dant2n  (1.9) for d=2 and

with A from Eq. (1.4 and A, from Eq. (1.6). Relations of ~ Aff’=n(n—2)(0.0020%-0.00384—1(I+1)(0.007 10y
the form(1.8) are characteristic of the models with multifrac- B
tal behavior[9]. 0.006 19 (1.12h
In Ref. [10] and subsequent papef$l-15, the field . .
theoretic rgno]rmalization gqrou(RC?) gng operqator product for d.=3 (analytical results are too cumbersome and will not
expansion(OPE) were applied to mode(1.1)—(1.3). In the be given here; see Refgl0] for 1 =0,2 and[14] for general
RG approach, the anomalous scaling for the structure fund)-
tions and various pair correlators is established as a conse-
guence of the existence of “dargerous” composite operators ) 5 5
in the corresponding operator product expansions whose&ni’=Nn(nN—2)(0.004 54+ 0.064 861+ 0.065 03 +|
negativecritical dimensions are identified with the anoma- (—0.019 742 —0.104 23 + 0.240 94+ 0.017 482)
lous exponentd . This allows one to construct a systematic ' ' ' '
perturbation expansion for the anomalous exponents, analo- (1.13a
gous to the well-knowre expansion in the RG theory of
critical behavior. for d=2 and
The key role in the RG and OPE approach to model
(1.D—(1.3 is played by the critical dimensions,,, associ- A®)=n(n—2)(0.0014®2+0.019 92+ 0.0343F+1(l+1)
ated with the irreducible tensor composite operators

TheO(&®) contribution toA,, was presented in Ref15],

X[ —0.004 20— 0.024 2h+0.002 80 (1 +1)
Fn|:7)ir[(9i10‘ . '(9i|9(t9i0(9i 0)p], (19) +0.050 65 (113b

wherel is the number of the free vector indices ane | for d=3. Here, we have presented tt¥e?) results with
+2p is the total number of the field8 entering into the improved accuracy in numerical coefficients and corrected a
operator; the vector indices of the symi|, are omitted.  misprint in the expression fat=3 in Ref.[15]. No analyti-
The symbolP; denotes the irreducible part, obtained by sub-cal formula forA is available for generatl, but the nu-
tracting the appropriate expression involving the delta symmerical result of the form(1.13 can be obtained for any
bols, such that the resulting tensor is traceless with respect fivend. The larged limit is discussed in Sec. VI E.
any pair of indices. In particularP;[d;6 d;0]= 3,6 ;0 Besides the calculational efficiency, an important advan-
— 6ij (90 9 0)/d and so on. tage of the RG approach is its universality: it can also be
The dimensiom ,=A 4 of the scalar operator is nothing applied to the case of finite correlation time or non-Gaussian
other than the anomalous exponent in Ef.6); see Ref. advecting field; see Ref13]. For passively advected vector
[10]. The dimensions with=+0 come into play if the forcing fields, any calculation of the exponents for higher-order cor-
(1.2) becomes anisotropidA,; corresponds to the leading relations calls for the RG techniques already in D)
zero-mode contribution to thigh term of the Legendre de- approximation18—20. Detailed introduction to the RG ap-
composition for the functiors, ; see Ref[13]. They can be proach in the statistical theory of turbulence and the bibliog-
systematically calculated as a seriesin raphy can be found in Ref§21,22.
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The main goal of this paper is to give the complete andthe slashed end of a solid line corresponds to the #€}dhe
detailed derivation of the third-order reslt13 announced end without a slash corresponds to The triple vertex
in Ref. [15], and to present and explain in detail the corre-V(®)=—6'v;9;60=09;6"v;0 [the equality holds due to the
sponding calculational technique. It might be useful not onlyintegration oveix in Eq. (2.1)] is represented as
for the rapid-change modél.1)—(1.3) and its descendants,
but also in a wider context of the statistical models of fully (o i

developed turbulence and critical dynamics. V(®) = - S S
Another scope of the paper is to discuss the nature and N i i N\

convergence properties of thkeexpansion. The knowledge

of the three terms allows one to obtain reasonable predictions

for finite values ofe~1 and to compare them with the ex- 23

isting nonperturbative results: analytical and numerical solu- . , ) o )

tions of the zero-mode equatiofs,7] and numerical simu- Thg d_ot with the_ index on the solid line denotes the differ-

lations[23—25. entlatlona/axj with respect to the a_rgumentof th_e er_wd (_)f
The plan of the paper is as follows. In Sec. Il we recall thethe line attached to t.he vertex; the indeof the_denvatlve is

field theoretic formulation of the model, diagrammatic tech-contracted with the index of the end of the line attached

nique, renormalization, and RG equations. In Sec. IIl wel0 the vertex. Owing to the transversality of the line, the

briefly discuss the OPE, renormalization of composite operadot can be moved onto another line, as shown in(EQ). In

tors (1.9 and their relationship to the issue of anomalousth® momentum representation, the vert&x3 corresponds

scaling. Since the “ideclogy” of the RG and OPE approachto the factor—ik; or, equivalently,+iq;, wherek andq are

to the model(1.1)—(1.3) is explained in Refs[10-13 in the momenta flowing into the vertex via the fleld’sanq 0,

detail, here we confine ourselves to only the necessary infof€spectively. The sum of the three momenta flowing into the

mation. In Sec. IV we present the general scheme of th¥ertex via the fields, 6’ v is equal to zero.

calculation of the critical dimensions of the operatbfs. In The linevv in the diagrams corresponds to correlation

Sec. V, the calculation in the one-loop and two-loop approxifunction (1.3), and the linesy 6" and 6 ¢ in model(2.1) in

mations is presented in great detail. Section VI is devoted téhe (w,k) representation correspond to the bare propagators

the three-loop calculation; some results for the relevant

quantities are given in the Appendix. In Sec. VIl we discuss (8 6" )o=(—iw+€) ™!, (66)o=C(K)(w*+ €)1,

the convergence of the expansion, the improved inverse

expansion, and comparison with existing nonperturbative re- €= 1ok?, (2.9
sults. The main ideas of the paper are briefly reviewed in the
Conclusion. whereC(k) is the Fourier transform of the functidd from
Eqg. (1.2 andw andk “flow via the line from the left to the
Il. FIELD THEORETIC FORMULATION OF THE right” if the standard form of the Fourier transform with
MODEL, DIAGRAMMATIC TECHNIQUE, respect to the coordinate and time differences is used.
RENORMALIZATION, AND RG EQUATIONS In what follows, we shall work in thet(k) representation,

where the propagator®.4) have the forms
The stochastic problenil.1)—(1.3) is equivalent to the
field theoretic model of the set of three fields={6,0’,v} (060 ,=0(t—t")exg{—(t—t") e}, (66)

with action functional ,
={C(k)2e,}exp[—|t—t'|e); 2.5
S(®)=0'Dy0' 12+ 0'[ — -+ vod*— (vd)]6— VD, *V/2.
(®) 0 [=dctved=(v)] " (21 In(86'), tisthe time argument of andt’ is the argument
' of 9’.

The first four terms in Eqg(2.1) represent the Martin-Siggia- The model(2.1) is logarithmic[the coupling constarg,

Rose-type action for the stochastic probléhi) and(1.2) at in Eq. (1.4) is dimensionlesat =0, and the UV diver-

fixed v, and the last term represents the Gaussian averagir@fnces have the form of ’the poles dnin the correlation
overv. HereD, andD, are the correlatorél.?) and (1.3), fUnctions of the fieldsd, 6'. Superficial UV divergences,

respectively, the required integrations over (t,x) and whose removal requires counterterms, are present only in the

summations over the vector indices are understood. l-ireducible function (6 6) 1., aznd the corresponding
The model(2.1) corresponds to a standard Feynman dia-counterterm reduces to the foréi¢°6; see Ref[10]. Thus

grammatic technique with the bare propagatars 4 6, 6 6’ for the complete elimination of the UV divergences it is suf-

(the line g’ ¢’ is absent In the diagrams, these propagatorsﬁCient to perform the multiplicative renormalization of the
are represented by the lines ’ parametersyy and go=Dgy/vy with the only independent

renormalization constar®,,,
(vw)o = ------ , (000 = ——, <99,> = —t . e
° Vo= VZV’ Jo=9gu Zg!
2.2 Zy=2," (Do=goro=guv). (2.6
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Here u is the renormalization mass in the minimal subtrac-

tion (MS) scheme, which we always use in what followgs,
and v are renormalized analogs of the bare parameggrs
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From the Dyson equation and Eq2.10 and (2.1]) it
follows that the exact response functi¢f §') is obtained
from its bare counterpaft? 6" ), in Egs.(2.4) and(2.5) sim-

and vq, andZ=2(g,e,d) are the renormalization constants. ply by the replacement

In the MS scheme they have the form #1only poles ins.”

The last relation in Eq(2.6) results from the absence of

renormalization of the contribution witB,, in Eq. (2.1).

vo— Veii=vo+ Cy(d—1)Dom™?/2de. (2.12

The renormalized action is obtained from the functionalThe renormalization consta@, in Eq. (2.6) can be found

(2.1) by the substitutior(2.6) and has the form

Sr(P)=0'D 40" 12+ 0'[ — 8+ vZ,9°— (v9)]6—VvD, vI2,
(2.7)

where the amplitud®,=gu’v from Eq.(1.3) is expressed
in renormalized parameters using E(&.6).

The exact response functidb=(6 ¢') satisfies the stan-
dard Dyson equation, which in the,k representation has
the form

G Hw,p)=—iw+rvep?>—24 4 w,p), (2.8
where the self-energy operat®y 4, in the diagrammatic no-
tation (2.2) and(2.3) is represented as follows:

(2.9

exactly from the requirement that the “effective diffusivity”
veit be UV finite in renormalized theor§2.7), i.e., have no
poles ine when expressed in renormalized varial2$). In
the MS scheme this gives

Z,=1-u(d—1)/2de, u=gCqy, Cq=S4/(2m)Y,
(2.13

where we have changed to the more convenient coupling
constanu. In the renormalized variables,; is given by the
expression

u(d—1)[(u/m)*—1]
2de ’

(2.19

Veff— V 1

which is obviously finite at—0.

The basic RG equation for a multiplicatively renormaliz-
able quantityF =ZFy (correlation function, composite op-
erator, etg. has the form

[DRG+ YF]FR: 01 DRG:DM+ Bau_ YVDV . (215

The multiloop diagrams, which could be added on theHere and belowD,=xd, for any variablex, and the RG

right-hand side of Eq(2.9), contain effectively closed cir-
cuits of retarded propagatof$ 6'), and therefore vanish; it
is crucial here that the correlation functi¢nv) in Eq. (1.3

is proportional to thes function in time. Therefore, the self-

energy operator is given by the one-loop approximation ex-

actly; it is independent ofo and has the form

Dopipjf
S =— dkP;; (k)N
[/ G(p) 2(277)01 IJ( ) k
Do(d_l)p2 Do(d_l)p2
= =———aU,
2d(2m)¢ 2d
(2.10
where

UE(Zw)_dJ dek:cdf dkk 17 ¢=Cygm /e,
m

Cy=Sy/(27)¢ (2.11)
with Ny from Eq. (1.3). The quantitySy=27%4T(d/2) is
the surface area of the unit spheredidimensional space. In
Eqg. (2.10 we have used the standard conventioft—t’)
=1/2 att=t’ for the step function in th& 6’ line and the
relation(P;;(k))=&;;(d—1)/d for the angular averaging of
the transverse projector thdimensions.

functions(the B function and the anomalous dimensiops
are defined as

B=D,u, v=D,nZc=p3,InZg foranyZe,
(2.19

whereT)M denotes the operatiopd,, at fixed bare param-
etersgy, vo. From the definitions, the last relation in Eq.
(2.6) and exact expressidR.13), for the basic RG functions
one obtains

Buy=u[—e+7y,], v,=u(d—1)/2d. (2.17
From Eq.(2.17) it follows that the RG equation@.15 pos-
sess an IR stable positive fixed point,

u, =2de/(d—1), B(u,)=0, B'(u,)=e>0.
(2.18

This fact implies that correlation functions of modéll)—
(1.3 in the IR region Ar>1, mr~1) exhibit scaling be-
havior; the corresponding critical dimensioipF [=A¢ can
be calculated as a seriesdn For the basic fields and quan-
tities, including the composite operatof8, the dimensions
are found exactly10],

A,=2—¢, Ap=1, Apy=(—1+¢/2),

A[@n]=nA9, Agr:d+1_8/2 (21@
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(no corrections of ordee? and highe). This is a conse-
guence of the exact equality,(u, ) =&, which follows from
Egs.(2.17) and(2.18.

In particular, for the structure functiond.5), relations
(2.19 along with dimensionality considerations give

Su(r)=Dg A" g (mrr), (2.20

with some nontrivial dependence on the IR saaleontained
in the scaling functiong,(mr).

Ill. COMPOSITE OPERATORS, OPERATOR PRODUCT
EXPANSION, AND ANOMALOUS SCALING

Representations of the forg2.20 for any scaling func-

tions £(mr) describe the behavior of the correlation func-

tions for Ar>1 and any fixed value ofmr. The inertial

range corresponds to the additional conditiom<<1. The

form of the functions¢(mr) at mr—0 is studied using the
OPE.

PHYSICAL REVIEW E54 056306

(they will be “activated” in the presence of a nonzero mixed
correlation functionvf) or an imposed gradient of the scalar
field).

If the functionC in Eq. (1.2) depends only om=|r|, the
model becomes S@] covariant and only the contributions
of scalar operators enter into E®.2). Indeed, in the isotro-
pic case the tensor indices of the mean val(ies of the
operators in Eq. (3.1) can only be those of Kronecker delta
symbols. It is impossible, however, to construct a nonzero
irreducible(tracelesstensor solely of the delta symbols.

In the presence of anisotropy, irreducible tensor operators
acquire nonzero mean values and their contributions appear
on the right-hand side of E¢3.2). In the simplest case of the
uniaxial anisotropy, specified by a unit vectorin the cor-
relation function(1.2), the mean value of Eh rank traceless
operator is necessarily proportional to tlle rank symmetri-
cal traceless tensor built of the vectwralong with the delta
symbols; its contraction with the corresponding coefficient
Ar gives rise to thdth-order Legendre polynomid? (z)

According to the OPE, the behavior of the quantities enWith z=(r-n)/r. In general, the expansion in irreducible ten-

tering into the right-hand side of E¢L.5) for r=x—x"—0
and fixedx+x' is given by the infinite sum

!

X+ X
[6(t,X)— 0(t,x’)]”=; CF(r)F(t,T), (3.0

where Cg are coefficients regular im? and F are all pos-

sors in Eq.(3.1) after the averaging leads to the decomposi-
tion in the irreducible representations of Sf)(thelth sec-
tor corresponds to the contribution of thé rank composite
operators.

The leading term in théth anisotropic sector is given by
the Ith rank tensor operator with minimal dimensiafF].
The feature typical to the models describing turbulence is the

sible renormalized local composite operators allowed by th&Xistence of composite operators witiegativecritical di-

symmetry(more precisely, see belgw
In what follows, it is assumed that the expans(8l) is

mensions; their contributions in the OPE lead to singular
behavior of the scaling functions atr—0, that is, to the

made in irreducible tensorscalars, vectors, and traceless ahomalous scaling. The operators with minimal are those

tensor$; the possible tensor indices of the operatBraire

involving the maximal possible number of fieldsand the

contracted with the corresponding indices of the coefficientgninimal possible number of derivativést least for smalt).
Cr. With no loss of generality, it can also be assumed thaBoth the problen{1.1)—(1.3) and the quantitie€l.5) possess
the expansion is made in “scaling” operators, i.e., thosethe symmetryd— 6+ const. It then follows that the expan-

having definite critical dimension&.
The structure function$l.5 are obtained by averaging
Eqg. (3.1) with the weight ex@Bg, the mean valueéF) ap-

sion (3.1) involves only operators invariant with respect to
this shift and therefore built of thgradientsof 6.
In general the operators entering into the right-hand side

pear on the right-hand side. Their asymptotic behavior foiof Eq. (3.1) are those that appear in the Taylor expansion and

m—0 is found from the corresponding RG equatid@slH
and has the forngF)ccmAF.

From the RG representati¢@.20 and the operator prod-
uct expansion(3.1) we therefore find the following expres-
sion for the structure functions in the inertial rangé&r(
>1, mr<1):

Sy(r)=Dg " ER X Ac(mr)(mn)AF, (3.2
F

with coefficientsAg regular inm?.
Some general remarks are now in order.

those that admix to them in renormalization. The leading
term of the Taylor expansion f@, is thenth rank operator,
which can symbolically be written as)§)"; its decomposi-
tion in irreducible tensors gives rise to operators of lower
ranks. In the presence of the noi€k2), operators of the
form (96)* with k<n admix to them in renormalization and
also appear in the OPE. Owing to the linearity of problem
(1.1), operators withk>n (whose contributions would be
more important do not admix to the terms of the Taylor
expansion forS, and do not appear in the corresponding
OPE.

We thus conclude that the leading terms of the inertial-

Owing to translational invariance, the operators havingrange behavior are related to the critical dimensidng of
the form of total derivatives give no contribution to Eg. the infinite family of irreducible tensor composite operators
(3.2: (dF(x))=d(F(x))=dx const=0. F, introduced in Eq(1.9).

In model(1.1)—(1.3), the operators with an odd number of  In general, operatorél.9) mix in renormalization. One
fields # also have vanishing mean values; their contributionsan show that the corresponding infinite renormalization ma-
vanish along with the odd structure functions themselvesrix
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No 21 No 22 No 41

FIG. 1. Diagrammatic repre-
sentation of the functiol’ in the
three-loop approximation.

No 45 No 46 No 51 No 61

. IV. CALCULATION OF THE CRITICAL DIMENSIONS OF
Foi= 2 ZninFrops 3.3 OPERATORS F,, : GENERAL SCHEME
n'l’

From now on, we shall consider composite operatbrd

is in fact block triangular, i.eZ, ,;+=0 for n’>n, and so in t_he mode_l without the noise, that is, W-imf’zo in_the
) el iy action functional(2.1). They are renormalized multiplica-

are the matrix of anomalous dimensiop@1) =2~ "D,Z and tively, Fm:ZmFﬁu and the renormalization constaris,

the matrix of critical dimensiond =n+nA,+ y(u,). It is =7..(g,¢,d) are determined by the requirement that the
then obvious that the dimensiods,, given by the eigen- 1 _ireducible correlation function

values of the latter matrix, are completely determined by the

finite subblocks withn’=n. Therefore, we can neglect all

the elements of the matrid.3) other thanz, ,,» . The latter (Fﬁl(x) O(Xq)- -+ 0(xn)>1_i,=Z;|1<Fm(x) (X)) + - 0(Xn)) 1-ir
are determined by the 1-irreducible correlation functions .

with one operatoF ,, andn fields . The diagrams for such =Zy (XX, ... X)) (4.0
functions do not involve the propagata? 6), from Eq.(2.4)
and can therefore be calculated directly in the “unforced”
model without the noisél.2), that is, without the first terms
in the action functional§2.1) and(2.7). In the absence of the
forcing, the model becomes S@)(covariant, the irreducible

be UV finite in renormalized theor§2.7), i.e., have no poles
in & when expressed in renormalized variabi2$). This is
equivalent to the UV finiteness of the prodt@ll“m(x; ),

operators with different values dfcannot mix in renormal- 1" Which
ization, so that the block&,, ,, appear diagonal.
We thus conclude that the critical dimensiakg are de- 1
termined by the diagonal elemerig =2, , of the matrix I'h(x;0)= mf dxq--- f AXp I (XX, - v v X))

(3.3,
X O(Xq)- - 0(Xy) (4.2
An=n+nA g+ yoi(Uy ) =nel24+ yq(Uy), yn(U)

is a functional of the field(x). In the zeroth approximation,
the functional(4.2) coincides with the operatd¥,(x), and

in higher orders the kernél, (x;x4, . .. X,) is given by the
with 8 from Eq.(2.16), u, from Eq.(2.18, andA,from Eq.  sum of diagrams shown in Fig. 1. The analysis of the dia-
(2.19. Owing to the renormalization, the critical dimension grams shows that for any argumext, the corresponding
A, is not equal to the simple sum of critical dimensionsspatial derivative is isolated as an external factor from each
Ay,=(—1+¢/2), A,=1 of the fields and derivatives consti- diagram. Using the integration by parts, these derivatives can
tuting F,,;. The elementZ,,, can be calculated in the model be moved onto the corresponding fiekx,) in Eq. (4.2), so
without forcing, in which the operatord.9) are renormal- that the quantity4.2) can be represented as a functional of
ized muItipIicativer:Fm=Zn|F§I . the vector fieldw;=4,6,

=D,InZy=BaInZ, (3.9

056306-6



CALCULATION OF THE ANOMALOUS EXPONENTS IN . .. PHYSICAL REVIEW E54 056306

1 o
I'y(x;0)= HJ dxg--- f dx, I3 0GR, LX) Zel=1-Py, ' 4.9

z;lgl T,

XWi (Xq) -+ W; (Xp). 4.3
1 n . . .
which allows for the recurrent calculation of the contribu-
tions[Z; ] in the expansior4.6) from the quantitied.
Indeed, selecting in Eq4.8) terms of the same order
gives

The diagrams that determine the kerdeélin Eq. (4.3
contain only logarithmic UV divergencies. Therefore, in or-
der to find the constari,,,* it is sufficient to calculate the

functional T with some special choice of its functional argu-

-17 _ ) e

mentw; , namely, one can replace it by its value at the fixed [Ze"]1= = Padil'1}, (4.9a
point x, the argument of the operatbr, in Eqgs.(4.1). Now - -
the productw; (x)- - -w; (x) can be taken outside the inte- [Ze Y= —PgdT o+ [Z: 14}, (4.9H
grals overxq, ... X, in Eq. (4.3, so that the functional
I',(x; 0) turns to a local composite operator. The integration “14 = 1= PP

- = . [Z¢ "13= = Padls+[Zg "Tal2+[Ze 1o}, (4.99
of the remaining functiod’,, overx,, ... X, gives a quan-

tity independent of any coordinate variables, and its vector q he relati . . ficient f
indices can only be those of Kronecker delta symbols. Theif"d SO on. The relations given in E4.9) are sufficient for

contraction . with  the  indices of - the _product thelr:hlr:eig -Iioelv(:ealgfelzg?]?. along with respective symmetry
w; (X)---w; (X) gives rise to the original operatdt, (X o o
'1( ) 'n( )9 9 P () coefficients, all the diagrams needed for the three-loop cal-

with some scalar coefficienf’. The integration over cylation of the function’, except for those with the self-
X1, - . . X, Means that in the Fourier representation, the COrenergy insertions of the forn2.9) in the @ 6’ lines. (The
responding correlation function is calculated with all its Mo-symmetry coefficients that are not shown are equal to Unity.
menta set equal to zero, which is always implied in whatthe index| in ') denotes the number of loog¢hat is,
follows. o _ independent integration momejitd =1,2,3. Below each
Now we turn to the derivation of practical formulas for diagram we give its number, which will always be used in
the calculation of the constangs,* from the diagrams. For  the following to refer to a diagram. The numbers have the
the sake of brevity, we introduce the notation, forms “No. XY,” where X is the number of “rays” in the
diagram andy is the order numbeffrom the left to the right
Zu=Zs, F(X)=F, T, (x;0)=F=FI'. (4.4  inFig. 1) of the diagram in the subset with give
The thick dots in the diagrams correspond to the vertices
of the composite operatdt (more precisely, see belowall
the horizontal dashed lines correspond to correlation func-
tions(vv) from Eq. (1.3 with Do=gvu?®, and the rays cor-
. respond to chains of line&d 6')o(6 6')y--- in the same
PalZ¢T]=0, (4.5 order on each ray: the upper end of each line corresponds to
the field # and the lower end corresponds &. For this
where Py, is the operation that selects the UV divergentreason, in contrast with Eq2.9), in Fig. 1 we do not add
part; in the MS scheme, it selects only polegirClassifying  slashes at the ends of the lines. If desired, they can easily be
the contributions in mode(2.7) according to the powers of restored: a slash should be added in the lower end of each
the renormalized coupling constamfrom Eq. (2.13 gives line belonging to a ray. The lowest “external lines” of the
diagrams in Fig. 1 correspond to the factéré&@nd not to the
° © = propagators We also note that the diagrams in Fig. 1 do not
Z;1:1+ > [Z;l]k, r=>, I'=F+ F> ry, involve the § 0 lines (even in the presence of the noise
k=1 k=0 k=1 In Fig. 1, we omitted the diagrams that are topologically
(4.6 possible and would be needed for the general correlation
o function (1.3), but in our model with the delta function in
where[Z£ ']y, T, andT' are the contributions of orde’  time in Eq. (1.3 they vanish due to the presence of the
in the respective quantities. We substitute expressi{dres  closed circuits of retarded propagatdié6’)y; cf. the re-
into Eq. (4.5 and omit the overall factoF; this gives mark in Sec. Il below Eq(2.9).
The contributions of the diagrams with the self-energy
insertions(2.9) will automatically be included if the propa-
=0. (4.7  gators(6#6')y in Fig. 1 are taken to be exact, that is, with
€= vesk? in EQs.(2.4 and(2.5). In the renormalized vari-
ables,vq¢s Is given by Eq.(2.14), the zero-order approxima-
We recall that in the MS scheme one hagZ*=1+ only  tion beingves = v. It is easy to see that the parameterom
poles ing,” so that Pdi\,{Zgl}:Z;l—l. Substituting this  e,= vk? enters into the final answers for the diagrams as
equality into Eq.(4.7) gives the relation v, wherel is the number of loops in the diagram. It is thus

Then the UV finiteness of the quantiﬂlglll“m(x;a) is ex-
pressed by the relation

Paiv

Ze'+Zet > T
k=1
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sufficient to calculate the diagrams without the self-energyunity. In what follows, in the calculations of the diagrams in

insertions and Withfk:sz and then introduce the addi- F(l) we shall retain the factorslu(/m)lS and rep|ace them
tional factor with unity only in the last step, that is, in the calculation of
. zet
(verlv) ' =[140]"", Q= u(d—DL(w/m)°—1] Let us turn to the vertex of the composite operafor
€ ’ 2de denoted in Fig. 1 by thick dots on the top of the diagrams.
(4.10 According to the general rules of the universal diagrammatic

_ _ technique(see, e.g., Ref[26]), for any composite operator
for any I-loop dlagram, see Ec(2.14)._ We stress _that the F(x) built of the fieldsé, the vertex withk=0 attached lines
replacementv— vq¢; IS not needed in the amplitudB, corresponds to the vertex factor

=gvu® of the correlation functiorf1.3).

Expression2.14) corresponds to the special choice of the V(XX - - x) = SKF(X)1 8 0(Xy) - - - 8 6(X).-
function N, in Eqg. (1.3). If the specific form of the IR regu- (4.13
larization is different[for example, the functiorN,= (k2
+m?)~92#2 was used in Refg5,10]], the relation(2.10  The arguments, - - - x, of the quantity(4.13 are contracted
for_ 341 remains valid, but the explicit f_or_m of the inte_gral with the arguments of the upper ends of the lie¢’ at-
U in Eq.(2.11) changes. Then the quantifyin Eq.(4.10is  tached to the vertex. For our operatéis9), built solely of
given by the following general relation: the gradientsv;(x) = 96(x)/Jx; at a single spacetime poikt

__rs PoS  1pp? 41 the factors(4.13 contain the produc; 6(x—Xy)- - - d;, 6(X
S B 0 (4.1 —x), and the integrations ovex;---x, are easily per-

. : formed: the derivatives move onto the upper ends of the
which recovers the expressiof.10 for N, from Eq. (1.3). S ; .

Introduction of the additional factor&t.10 to the dia- qorresponddlng Imgﬁz attach?]d t? the v;rtr?@guch deriva-
grams of () in Fig. 1 with Dy=gru® in Eq. (1.3 and €, tives we denote by dots on the linesnd their arguments
=vk? in Eq. (2.5 for the quantitied,, in Eq. (4.9) gives

X1- - X, are substituted withkx. After the derivatives have

been moved inside the diagram, the remaining vertex factor

F-TW T.oT@_oTW f_or the operatof=(x) can be understood as a usual deriva-
1= 2T Q ’ tive,

[3=T®-2QT®+Q7T™. (4.12 Vi 0=dFO0law, (x)---aw, (x). (414

Expanding the quantit®) from Eq.(4.10 in e gives rise to
contributions with the logarithms Ip({m); similar contribu-
tions also come from the factorg.(m)'?, which naturally instead ofi,- - -i,. Then the vertex factof4.14) for a k-ray
arise in anyl-loop diagram in"(")_ It is well known that the diagram tahes cl)(n the form

renormalization constants in the MS scheme are independent

In what follows, in order to simplify the notation we shall
omit the argumenk and use the numerical indices.1 . k

of any mass parameters, like and « in the case at hand. Vip . . =d1ds - -F with d,=aldw; . (4.15
This means that, after the substitution of relatiohd.2 into ' '
Egs.(4.9), all contributions with Inf/m) in Zz* will cancel Diagrams Nos. 41, 46, 51, 61 in Fig. 1 are “factorizable”

each other. Such cancellation provides a good possibility t¢ the sense that they can be reduced to the products of

control the absence of calculational errors. In the two-loof|ocks with a lesser number of rays. All the other diagrams
calculation[10] we have checked the cancellation of the con-in Fig. 1 will be termed “normal.”

tributionse ~ In(u/m) in [Z;l]z. There, the functioiN, was
taken in the form different from Ed1.3) (see abovg thee
expansion of the corresponding quant@yn Eq. (4.11) con-
tained constant terms along with powers of the logarithms The contribution of a specific diagram into the functional
In(u/m), so that it was necessary to take into account thd in Ed. (4.3 for any composite operatdf, built of the

contribution withQ in expressior(4.12) for T,. gradientsw; = d;6, is represented in the form

Our present choice fdX, in Eq. (1.3) is much more con-
venient, because the corresponding integPall) contains
only poles ine, and thee expansion of the corresponding whereV,, . is the vertex factof4.15), 122 is the “inter-

quantity Q in Eq. (4'10). contains _only POWers Of Ipd/rm) nal block” of the diagram with free indices, the product
with no constant contributions. Since we know in advanceW We- - - corresponds to external lines. The numerical indi-
that all contributions with Ing/m) in Z-* will cancel each a’b P '

A. Scalarization of the diagrams

C=Vi 18 wawy- - -, (4.16

h ol Zmin th lculati £ thi ces 1,2, ...will always be understood as,i,, ..., their
ot er, we may simply se,u_—m_m t € caicu ation 0 t_'s number in Eq(4.16 equals the number of the letter indices
qguantity. Then all the contributions with |a(m) vanish, in a,b, ... and is determined by the number of “rays,” that is,

Eq. (4'1_@ we. obtainQ=0 (ng corrections from th(_a Self- the number of lines that attach to the vertex of the operator.
energy insertions are neededn Eq. (4.12 we obtainI'y  These lines are given by products of the propagator ),
=T'" and the factorsg/m)'® in thel-loop diagrams turn to  from Eq. (2.5 with e,= vk? (see aboveand are connected
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by the linesvv from Eq. (1.3). As an example, we present k=4, S;=8[61202003c044l,
the general form of a four-ray diagrah

S,=8[ 6120ap03c0ad]s  S3= I 6120340ap0c4]- (4.19

This is sufficient for the three-loop calculation, because the
diagrams withk=5,6 in Fig. 1 factorize into products of the
blocks withk=2,3.
= Vi2sa I%5% wowpwewq. 4.17) The quantities that will be directly calculated from the
' diagrams are not the coefficierl8s themselves, but the fol-
lowing scalar quantities related to them:

1234

The thick dot on the top represents the vertex of the compos- A :tr[(Si)"i‘,bz'y'_ Sl i‘g_'.',']:tr[SiSI 1. (4.20
ite operator, it corresponds to the vertex factps, in Eq.
(4.19. The dots on the lines denote the differential operatiorHere and below, the symbol tr denotes the contraction with
d,=0dl dx; ; their indices are shown explicitly in the diagram. respect to all repeated indices, which will not be shown ex-
The lower external lines of the diagram correspond to factorglicitly.
0; the derivatives at the external verticés3), denoted by It is therefore necessary to express the coeffici@ntm
dots with the indicesa,b,c,d, act on these fields and turn Eg. (4.18 in terms of the quantitie$4.20. This is easily
them into the produatv,w,w.wy with w;=36/Jx; . Afterall  done: substituting Eq4.18) into Eq. (4.20 gives
these differentiations have been performed, all the external
momenta in the diagrams are set to zero; the IR regulariza- B
tion is provided by the parameten in the function(vv) Ai_zk: MikBy
from Eq.(1.3).

The diagrams are calculated in the time-momentum repgyhere
resentation. The integration momenta are assigned to all in-

ternal lines; the number of independent momenta is equal to M, =tr[SS]. (4.21)
the number obv lines. The dots with the numerical indices
1,2,... on theupper lines in Eq(4.17) correspond to the In a compact notatiorA=MB (matrix M acts onto vector

vector factorstiks, coming from the vertex of the compos- B and gives vectoA). The symmetrical matri# defined in
ite operator. Heré is the integration momentum flowing via Eq. (4.21) is easily calculated for any given set of structures
the line with the index shown near the dat<(1,2,3,4); the  of the form (4.19; then the corresponding inverse matrix
coefficient equals-i if the momentum “flows into the dot” M~ s found and the desired expressionsBadn terms ofA
and +i if the momentum “flows out.” In general, similar follow from the relationB=M ~A.
factors are also present inside the diagram, that is, inside the Below we give the explicit expressions for matrix ele-
shaded block in Eq(4.17). Collecting all such factors-i mentsM;, = M,; for the structure€4.19),
from the whole diagram gives a certain “sign factor”'1,
which, of course, should be taken into account in the calcu- k=2, M;;=d(d+1)/2, M;,=d, M,=d?%
lations.

Since the vertex factof4.15 and the productv wy,- - - k=3, My;=d(d+1)(d+2)/6, My,=d(d+2)/3,
are symmetrical with respect to any permutations of their
indices, the quantityl"i‘gjj_' in Eqg. (4.16 is automatically M ,,=d(d+2)2/9:
symmetrized with respect to any permutations of the letter ’
indicesa,b, ... and the numerical indices 1,2 .. Inwhat _ _
follows, such symmetrization will always be denoted by the k=4, Mp=d(d+1)(d+2)(d+3)/24,
symbol S.

For any fixed number of rayls the quantitySl is repre-
sented as a linear combination

M ,2=d(d+2)(d+3)/12, M3=d(d+2)/3,
M,,=d(d+2)(d?+ 7d+16)/72,
Sl Izi BiS (4.18 Mos=d(d+2)%/9, May=dX(d+2)2/9. (4.22
of certain basis tensor structurS&(Si)i’bz'"_j - with certain It is worth noting that in the calculation of quantities like

numerical coefficient®;. The structures for théray dia-  Mik in Ed.(4.21) or A; in Eq. (4.20, it is sufficient to retain
grams withk=2,3,4 have the forméhere are two structures the symbolS only in one of the cofactors, because the sec-

for k=2,3 and three structures fer=4) ond is symmetrized automatically and can be replaced with
one of its terms, like the expressions in square brackets in
k=2, $;=861a02p], S2= 8 9126ap]; Eq. (4-19)- . _ . '
Inverting the matriceM in Eq. (4.22 gives the following
k=3, S;=8[61202003c], S;=8[ 6126ap03c]; explicit expressions of the coefficienBsin terms ofA:
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k:2, Bl=2a[dA1—A2],

a=[(d—1)d(d+2)]" %, (4.233
k=3, By=6a[(d+2)A;—3A,],
B,=9a[ — 2A;+(d+1)A,] with
a=[(d—1)d(d+2)(d+4)]" 1, (4.23b

k=4, B,=24a[(d+2)(d+4)A;—6(d+2)A,+3As],
B,=72a[ —2(d+2)A; + (d?+3d+6)A,— (d+3)As],
By=9a[8A;—8(d+3)A,+ (d+3)(d+5)As] with

a=[(d—1)d(d+1)(d+2)(d+4)(d+6)] %
(4.2309

It should be emphasized that the above relatigh?2

PHYSICAL REVIEW E 64 056306

where the symbab denotes the symmetrization with respect
to the numericalindices.

From Egs.(4.25 and(4.26) one obtains

I'i=Vi . (T)w.., (4.28

where the symboS§ in the quantitied4.27) can be omitted
owing to the fact that the verticas,,... are symmetrical.

For a generak-ray diagram we need to calculate contrac-
tions of the vertex factory; .. ., with the structured ;.. of
the form(4.27). Their basis is provided by the set

Wi Wi, W28 W3- - - Wy,
(4.29
Consider first the contraction of the vertex factdrl5

with the first monomial in Eq(4.29), that is, the expression
L F with the operator

W*81,03Ws- - -W,, and so on.

LkEwl---Wk&1~--&k, 0|53/5W| (43@

and (4.23 are independent of the specific choice of a com-The key role in the calculation of the quantlty F is played

posite operator built of the gradients=d;6, which only
determines the explicit form of the vertex faci@r15).

B. Contractions of basic tensor structures

Consider the procedure of the contraction of the quantitie
120" in Eq. (4.16 with external factors: the vertex factor
V4,... of the composite operator and the produgiwvy,- - - .
General rules given below are valid for any local monomia
F built of the gradientswv;= ;0. The operatoiF may have
vector indices; as a rule, they will not be shown explicitly.

Substituting the decompositiof4.18 into Eq. (4.16
gives

F:Z Bivlz..(&)i‘f’é;::wawb-~~=Ei Bl
(4.24)

wherel’; are the contractions of the quantitigs19 with the
external factors

[i=Vio. . (S)13 ] WaWp- - . (4.29
Consider first the contractions
(T2 .. =(S)3% Wawp- - - (4.26

of the structure§; with the external factora. For quantities
(4.19, they are easily calculated,

k=2, (T)=WiWy, (T2)1=W?8y,;
k=3, (T1)123=WiWoW3, (T2)125=W>S[ 81 W3];
k=4, (T1)1234=W1WoW3Wy,

(T2)1234= W2S[ 51 WaWy], (T3)10345= WAS[ 812834,
4.27

by the following consideration: by permutations of the fac-
torsw and d/ dw, the operatot_, in Eq. (4.30 can be repre-
sented in the form of a polynomial in the operati@n
=w;d/dw; . The action of the latter onto any monomkis

gasily found, namelyDF =nF, wheren is the total number

of the fieldsw in the monomialF. By permutations of the
factorsw and g/ dw, one can easily obtain the recurrent rela-
tion Ly, 1=L(D—K) for the operatoL,, which along with
the relationL ;=D gives

Ly=D(D—1)(D-2)---(D—k+1), D=w;dlw;.
(4.31)

When this operation acts ontg each symboD is replaced
with the numbem, which gives the desired coefficient

(4.32

wheren is the total number of the factovgin the operatofF.
Consider now the contraction of the vertex factérl
with the second structure in E¢4.29. The latter includes
the factoré;,, which after the contraction witid,d, gives
the Laplace operatar’= 9,4, with 9,=d/ dw; . This operator
commutes with the other derivativésand acts directly onto
F. Therefore the first task is the calculation of the quantity
#°F, which is easily done for any specific monomiabuilt
of the gradientsv;=4,6.
From now on, we shall confine ourselves with the family
of operatorsF,; from Eg. (1.9), which in the new notation
take on the form

LiF=n(n=1)(n—2)---(n—k+1)F,

Foi=Pulwy- - -ww?P], n=1+2p. (4.33

The quantities??F for such operators are easily calculated,

PFy=NnFno2, Ag=(n=1)(d+n+1-2).
(4.39
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FIG. 2. Diagrams of the func-
tion I' in the one-loop and two-
loop approximations in the de-
tailed notation.

No 21 No 22
It is worth noting that in the calculation of the quantitgF, k=4, k;=n(n—1)(n—2)(n—3),
there is no need to take into account contributions in which
both derivatives act onto the monomial,---w, in Eg. ko=(n=2)(N=3)N\n, Ka=An_o/\p;  (4.360
(4.33: in this case, two factorsy are necessarily replaced '
with the symbold;s (the number of free indices is preserved, k=5, k;=n(n—1)(n—=2)(n—3)(n—4),

and the number of factor& is reduced by two under the

action ofg?), and any contribution witl#,, disappears under ko=(n—2)(n—=3)(n—4)\, Kg=(N—4)\y_2)\py;

the action of the operatio®; in Eqg. (4.33. (4.360
It is clear that the combination of the relatiof#32 and

(4.34 gives a complete solution to the problem of the calcu- k=6, ky=n(n—1)(n—2)(n—3)(n—4)(n—-5),

lation of the contractions of vertex facto#.15 with basis

structures of the forni.29 for our specific operator@t.33), ko=(n=2)(n=3)(n=4)(N=5)\,

and that the above considerations can be directly generalized

to the case of any operat®t polynomial inw. If the basis ks=(N=4)(N=5)Nn-2\ni, Ka=Np-g/hn-2/\ni-
structure includes several delta symb@sy., two delta sym- (4.36¢

bols in the third monomial in Eq4.29], the operatiory? - . .

should be applied repeatedly; one should also remember th pe coefflCl_entski with k:5. and 6 W'" be needed only for.
each next Laplacian acts onto the operator that has alreaq_ € calculatlon of the fac_torlzable diagrams Nos. 51, 61 with
been modified replacemenn—n—2 in Eq. (4.34]. After e and six rays, repectively. . .

all the operations’”> have been applied, only the operation The quantitiesp; are calculated d|r_ectly from the dia-
L, Eq.(4.30, with the reduced number of factors remains; 9"ams. then one calculates the quantifizsusing the rela-

. i . tions(4.23, and then, finally, one calculates the desired con-
it acts onto the properly modified operat®according to the oo . . ;
rule (4.32. For our operator§,,,, additional scalar factors tribution of the diagraml’ using the relationg4.39 and

w?, w4, ... in monomials(4.29 restore the original scalar (4.36.

factor w?? in Eq. (4.33. Therefore, all the quantitieE; in

Eq. (4.289 are proportional to the original operat64.33: C. Calculation of the quantities A;

I';=k;F with some numerical coefficients. They are eas- The quantitied2) " for the diagramd™ are calculated at

ily found using the rules discussed above. In particular, for,erg external momenta: the independent integration mo-
the tvv(%-ray d|§gzram§‘1=vlzw1w.2=.L2F= n(n—1)F, I'>  menta will always be denoted lyin the one-loop diagrams,
=V W b1,=wW°d°F =\, F, and similarly for the three-ray g in all two-loop diagrams, an#, g, | in all three-loop

and four-ray diagrams. , _ diagrams. They are always assigned to the horizontal lines
Substituting the relatiol’;=k;F into Eq. (4.24 gives vv; in the normal(not factorizable diagrams the order is the
following: k flows via the uppermost lingg flows via the
I'=FT, FZE kB, (435  nextline, and flows via the lowest line.
I

These rules are illustrated by Fig. 2, where the one-loop
and two-loop diagrams are presented with all their momenta;
wherek; are the coefficients in front df in the contractions the directions of the latter are shown by arrows. We denote
of the vertex factolV,. .., with structures(4.29, numbered all the propagators by solid lines because the horizantal
in the same orderk(; corresponds to the structure without lines cannot be confused with the “rays” built of th&6’

delta symbolsk, corresponds to the structure with one deltalines. The letter indicea,b, ... of thevv lines are always
symbol, and so on free (they will be contracted with the indices of the external
factorsw,wy- - -), while the numerical indices of thev
k=2, ky=n(n—1), ky=\,, lines are always contracted with the indices of derivatives
(that is, the momentum factorsips), shown by dots on the
where 06’ lines.
We shall calculate the diagrams in the time-momentum
Ap=(n=1)(d+n+1-2); (4.36a  (t,k) representation. First, the elementary integrations over
all times are performed. This gives a certain “energy de-
k=3, kj=n(n—=21)(n—2), ky=(N—=2)\y; nominator” ¢¢, that is, the factongbgl in the integrand. The

(4.36bH remaining integrations are those oveidimensional mo-
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menta k in one-loop diagramsk, g in two-loop diagrams, ¢g=2¢ for diagram No. 21 in Fig. 2¢pg=2¢€,2¢€ 1 o for
andk, g, | in three-loop diagrams Each integration is ac- diagram No. 22, andpg=2¢g[ e+ €4+ €. o] for diagram
companied by the factddy(27) "% with Dg=gvu®, and all  No. 31.

v's will later be canceled out with analogous factors in the The scalar factorgs in Eq. (4.38 are generated by the
energy denominators. As a result, the quant) .~ from  vv lines whose vector indices are contracted with the indices

Eq. (4.16 is represented as follows: of two integration momenta in the diagram. This gives rise to
expressions of the formpPp’)EpiPijpj’ , WhereP is the
1 loop, 120 =[Dy(27) ¢ J'de ab-. projector that corresponds tq the line andp, p’ are t_he
p, 175 =[Do(2m) "] kP12 momenta contracted to the liféhe factors*i are not in-

(4378 cluded. In what follows, we denote &8, P,, andP; the
transverse projectors for the momemtaq, andl, respec-
2 loops, '33‘55:['30(2”)_(’]2[ f dkququ¢i‘§,‘_[‘, tively. Then the scalar factors from the diagrams in Fig. 2
take on the formp = (qP,q) for No. 22 and¢p,=1 for Nos.
(4.370 21, 31, because the latter two diagrams do not contain lines
vv contracted to two momenta.
The numerical coefficiert in Eq. (4.38) is represented as
the productC=C,C,C3;, whereC, is the symmetry coeffi-
Xf f f dkdquNquN|¢i‘§_‘_[' , cient of the diagram, shown in Fig. G,==*1 is the sign
factor (see Sec. IVAandCs;=1 or 2 is the number of the
(4.370  temporal versions. For most of the diagrams one Gas
+1, but there are two diagrams wi@,= —1 (Nos. 44, 45.
The factorCs; is equal to 1 except for the diagrams Nos. 43,
44 with C3=2. In what follows, we shall always present the
coefficient C as the productC=C;C,C3, for example,C
=1/2xX1X1 for diagrams Nos. 21, 22 in Fig. 2 afi@=1
ab- - ~1, Tab. .- X 1Xx1 for diagram No. 31.
iz =Cde deliz 439 Now let us turn to the quantities®d '~ in Eq. (4.39,
whereC is a numerical factorgg is the energy denominator, which remain in the integrands after the scalar factgts
¢, is an additional “scalar factor,” which can arise due to have been isolated. They have the same stucture for all the
contractions over the internal indices, arfg "~ is the non- ~ diagrams with two and three rays and any number of loops,
trivial “index structure” of the integrand, which remains @nd two possible structures for the four-ray diagrams,
after ¢ has been isolated. namely,
Let us explain in more detail the calculation of the factors _
entering into Eq(4.39 starting with the energy factoisg * . k=2, n1=133=xX;X,Pqp;
Since the velocity correlation functiofil.3) contains the
delta function in timg, the dot§ on the rays cpnnecteq by such k=3, nzzﬁlggz X1(X+Y)oY3aPpc:
correlators have coincident timéslif we assign the time
=0 to the uppermost vertex of a diagrafthat is, to the — )
vertex of the composite operajpthe independent variables k=4, n3=1755=X1Y2Z5(X+Yy+2) s@apPeq;
will be the timest;<0 of the horizontabuv lines. On any of o
the rays, the timeg decrease from above to below owing to k=4, nd=12080=xy,75(x+y+2)4ParPly. (4.39
the retardation property of the functiofi8 6’ ), in Eq. (2.5).
For the normalnot factorizablg one-loop and two-loop dia- We have introduced the numbering n1-n4 and in what fol-
grams in Fig. 1, the order of the timgs<0 is determined by lows, when describing the diagrams we shall only give the
the form of the diagram in a unique way, that is, there is only, mper of the corresponding structure, el_g;,nl with the

one “temporal version.” This is also true for all the three- specification of the vectors,y,z, a, 8 and projectors®, P’
loop diagrams with two and three rays. However, for two of . — ]
In particular, we havé =nl with x=k, P=P, for diagram

the three-loop diagram®os. 43, 44 in Fig. Lthere are two R — ) )
equivalent temporal versionghe exchange,«<ts in dia- NO- 21 in Fig. 2,1=n1 with x=k+gq, P=Pq for diagram
gram No. 43 and,«t, in diagram No. 44 This gives the No. 22, andl=n2 with x=k, y=q, a=P,q, P=P, for
additional factor 2 in the coefficief@ in Eq. (4.38 for these  diagram No. 31(quantities likea=P,q are undestood as
two diagrams. vectors obtained by the action of the matRy onto thevec-
The energy denominatebe , obtained as the result of the tor q).
integrations over all time variables, is given by the product Our aim is the calculation of the quantiti§ in Eq.
of the factors corresponding to the “temporal cross sec{4.20 for each diagram in Fig. 1. They are given by the
tions” of the diagrams between the horizontal lines; to  contractions of the integral§4.37) with the structuresS
each cross section corresponds the sum of “energigs” from Eq. (4.19, which leads to the replacement of the fac-
=pp? for all intersectedd 6’ lines. For example, one has tors ¢>’i‘§’f}_' in Eqg. (4.37 with the quantities ¢,

3 loops, 135 =[Dg(2m) 93

with N, from Eq. (1.3). After these scalar factors have been
isolated, only the transverse projecté?semain in thevv
lines. The nontrivial partsp?)~ of the integrands in Eq.
(4.37 are represented as follows:
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=tr[(S)§%  S¢25. 1. Substituting expressiof¥.39 into =nl with x=k+q, P=Py; (5.2)
this construction givesbi=C¢gl¢sAi , Where
o - diagram No. 31,C=1X1X1, ¢;=1,
A=t SSI] (4.40
Pe=2€4( €t €4t €kt q),
are the analogs of quantiti€é4.20 with the replacement 5 Gk Ra T T

—1. As a result, from the relation@.20), (4.37), (4.38), and =n2 with x=k, y=qg, @=Pq, P=P, [(x-a)=0,
(4.40 one obtains the following explicit formulas for the
calculation of the coefficients, : Py=0]: (5.3

_ —d -1, A in the square brackets we give simple relations specific of a
1 loop, Ai=[Do(2m) ]f dkNC de " P given set of momenta and projectors, which are useful in the
(44138 calculations. We also recall thag= vp?.

Substituting the explicit expressiors.1)—(5.3) into the

2 loops, Ai:[DO(Z”T)id]ZJA f dkdgNyN,C ¢El¢sKiv general relation$4.42 and(4.43 gives

(4.41b diagram No. 21, A;=0, A,=(d—1)k?; (5.4
— —dy3 _ _
3 loops, A;=[Do(2m) "] diagram No. 22, A, = (kPgk), A= (d—1)(k+q)2
_ (5.9
xf f fdkdquNquN|C el A

diagram No. 31, B;=(qP,q)(kPgk),
(4.410 g 1= (gP«q)(kPk)
_ YN 2 ) 2
with A, from Eq. (4.40. 9A;=(d=1)(qPq)[k"+2(k-a)]+2(kPqPa)[q
Calculation of these quantities for structures nl and n2 +2(k-g)]. (5.6)
from Eq. (4.39 andS; from Eq.(4.19 gives,

k=2(T=n1), Ai=(xPX), Ay=(d—1)x2 (4.42 A. One-loop approximation

The one-loop approximatioff®) in Eq. (4.6) is deter-

k=3(l_= n2), 3K1=(y-a)(xPx)+(x-a)(yPy) mined by only diagram No. 21 in Fig. 2. Substituting the
quantities known from Eqg5.1) and(5.4) and the relation
+[(X+y)- al(xPy), €= vk? into Eq. (4.413 gives(we recall that the symmetry

. coefficient 1/2 is included int€):
9A,=[x*+2(x-y)][(d—1)(y- @)+ 2(yPa)]

+[y?+2(x-y)][(d— 1)(x- @) +2(xPa)].
(4.43 with the integralu=(27) ~ 4/ dkN, from Eq.(2.11). Substi-
tuting that expression into E@5.7) gives
Analogous expressions can also be obtained for the struc-

tures n3 and n4 in Edq4.39 for the four-ray diagrams; they
are rather cumbersome are will be given later in Sec. VI A.

diagram No. 21, A;=0, A,=[(d—1)/4]gu®U (5.7)

diagram No. 21, A;=0, A,=u[(d—1)/4e](u/m)?,

u=gCy (5.8

V. CALCULATION IN THE ONE-LOOP AND TWO-LOOP

APPROXIMATIONS with coefficientCy from Eqg. (2.11)

From the relations(4.239 and (5.8 we find B;=

In the one-loop approximation, we need only diagram No.—2aA;, B,=a(d+1)A, with a from Eq. (4.233 and A,
21, and in the two-loop approximation, all the four diagramsfrom Eq. (5.8); then from Eqs(4.35 and(4.36a we obtain
from Fig. 2 are needed. Using the general rules discussed e quantity T for diagram: F(diagram No. 21¥ oA,
the previous section, for the normal diagrams in the notatiofi—2n(n—1)+ (d+ 1)\,,]. Substituting the known expres-

(4.38, (4.39 we obtain sions fora andA, gives
diagram No. 21,C=1/2X1X1, ¢s=1, ¢dg=2¢, F(l)zﬂdiagram No. 21
I=nl1 with x=k, P=P, [Px=0]; (5.1) =u(,u/m)*’(d+ 1)Np—2n(n—1) 59

4ed(d+2)
diagram No. 22,C=1/2X1X1, ¢s=(qPyq),
Then the relation4.99 gives the final result for th€©(u)
de=4€q€k1q) contribution to the renormalization constant,
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2n(n—1)—(d+ 1)\,

Ze'=1HZe T [Ze h=u—Z 4472

(5.10

B. Two-loop approximation

PHYSICAL REVIEW E 64 056306

The denominators in the integraf5.13 and (5.14) are
symmetrical with respect to the permutatikra>q. This al-
lows one to perform the analogous symmetrization in the
numerators, which is equivalent to the replacemént (k?
+0?)/2 in the latter. Then the expressions simplify and re-
duce to linear combinations of the following standard inte-

Consider now the two-loop diigrams Nos. 22, 31 in Fig.grals:

2; the corresponding coefficiens; are known from Egs.
(5.9 and (5.6). They include the quantities kPyk)
=k?sir?9, (qPya)=q?sintd, (kP4Pyq)=— (k- q)smzﬁ (k

-0)?=k?qgcogd, whered is the angle between the vectors

k and g. Substituting these expressions into E(¢s5 and
(5.6) gives

diagram No. 22, A;=k3sir?d, A,=(d—1)(k+q)%
(5.11)

diagram No. 31, 3,=k?q?sin*9,
9A,=sirtd{(d—1)q k2+2(k-q)]—2(k-q)
x[q*+2(k-q)]}

=qg2sirt9{(d—1)[k>+2(k-q)]—2(k- q) — 4k?*cog9}.
(5.12

Substituting these expressions along with the other

needed information from Eq$5.2) and(5.3) and the relation
ep=vp? into Eq. (4.41b gives

diagram No. 22, A;=[(gu*®)%/8](27) 24

ffdkquN

A,=[(d— 1)(g,u3)2/8](277)_2df f dkdgNyNsin*9;
(5.13

k2sin* 9
(k+q)?’

diagram No. 31, B,=[(gu®)%/4](2m7) 24

xf fdkququ

" k?sin*9
k*+q°+(k-q)’
A2=[(g,u*’)2/4](27r)’2dj Jdkququ

smzﬂ{(d DK2+2(k-q)]—2(k-q)— 4k2co§ﬂ}
k?+qg*+(k-q)

(5.19

We note that in the coefficienss, , for diagram No. 31, the

H2p=(2w)*2dffdkququsinzr)a, p=1,2,
(5.15

h=(2m)" ZdJJ’dkququ(k q)sint9/(k+q)?,
(5.16

thz(zw)*df f dkdaNNg(k- q)sin?P9/[k?+ g2

+(k-q)], p=1,2.

(5.19
The coefficientd; in Egs.(5.13 and(5.14) are expressed
in terms of these integrals as follows:

diagram No. 22, A;=[(gu®)?/8][H4/2—h],

Ay=[(gu®)*/8I[(d—1)H,]; (5.18

diagram No. 31, B;=[(gu®)?/4][H4/2—h,/2],

9A,=[(gu®)?/4][(d—5)H,/2+ 2H 4+ 3(d— 1)h,/2— 2h,].
(5.19

These expressions along with E4.233 for diagram No.
22 and Eq.(4.23b for diagram No. 31 give the coefficients
B;, then using Eqgs(4.35), (4.366),_and(4.36b one obtains

the corresponding quantitiesl’(diagram No. 22) and

F(diagram No. 31); the answers are represented as linear
combinations of the standard integréts15—(5.17).

The two-loop quantity"?) also includes the contribution
from the factorizable diagram No. 41 with the symmetry
coefficient 1/8; see Fig. 1. It reduces to the contraction of the
vertex factorVq,34 with the productT,T3, of two identical
one-loop blocks similar to diagram No. 21. In the notation of
Eqgs.(4.24—(4.29 this contribution has the form

T'=C Vip3{ ByWiWy+ Bow?315][ BywaW, + Bow2 85, =FT,
(5.20

whereB, , are the known coefficients for the one-loop dia-
gram No. 21(see Sec. V AandC is an additional symmetry
coefficient; in the case at han@=1/2. Let us explain its
origin. By definition, the quantitie8, , for diagram No. 21
already include its symmetry coefficient 1lia the factorC

factor g> from €q in the denominators cancels out with the in Eq. (4.38], which gives 1/4 for the product of two such
analogous factor in the numerators, while in the coefficienblocks. Therefore, in order to obtain the correct symmetry
A, for diagram No. 22, a similar cancellation of the factor coefficient 1/8 for diagram No. 41, the additional coefficient
(k+Qq)? takes place. C=1/2 should be included.
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Multiplying the expressions in the square brackets in Eq.
(5.20 and taking into account the definition of the coeffi-

cientsk; in Eq. (4.36 gives

T'(diagram No. 41=[1/2][k;B2+ 2k,B,B,+ k3B§(] )
5.2

with coefficientsk, , s from Eq.(4.369 and known quantities

PHYSICAL REVIEW E54 056306

d—1
(sinzﬂcosz"w:ﬁam, (sirf9cog"9)
B (d*-1)
T (d+2n)(d+2n+2) ¥ (5.25
with n=0,1,2 ... anda,, from Eq.(5.24.

In the notation introduced above, the integrls, in Eq.

B, for the one-loop diagram No. 21. In what follows, the (5.15 are written in the form
same scheme will be used for the calculation of the contri-

butions of the three-loop factorizable diagrams Nos. 46, 51,

61; the coefficientk; from Egs.(4.369 and (4.366 will be
involved.
We have found all terms in the two-loop expression

I'@=T(diagram No. 22+ I'(diagram No. 31

+I'(diagram No. 41 (5.22

Now Eq.(4.9b is used to determine the two-loop contribu-

tion [Z 1], in the renormalization constad:*, with T'(1)
from Eq. (5.9, I'® from Eq. (5.22, and[Z '], from Eq.
(5.10. It is also necessary to sgt=m in all the diagrams of

T2 in order to eliminate contributions with the logarithms
In(w/m) (they would be canceled with the contributions of

o~

Then Eq.(5.25 gives

(sirfP®), p=1,2. (5.2

1+e

m-28(d—1)

m~%(d*-1)
Hp=Ci———— H4=Cj

de d(d+2)e?
(5.27)

Now let us turn to the integrals,, in Eq.(5.17). Expand-
ing their integrands ink-q) gives

_ng (- 1)|f k1+£fquq

I+1

kq
k?+g?

the diagrams with self-energy insertions, which we already

omitted.
All the quantities in Eq(4.9b are known explicitly, ex-

X (sirfP9cos™19). (5.28

cept for the contributions of diagrams Nos. 22, 31, for whichThe averagésin®®dcos*19) differs from zero only for odd,

we only know the expressions of the coefficieA{sn terms
of the standard integral®.15—(5.17). In order to calculate
the quantity(4.9b), we need only their divergent partsl/e?

and 1k, but for the three-loop calculation we shall also need

the zero order ire (constant terms.

and the series in Eq5.28 can be written as

hap=— cgngo I(m)(sirfP¥co" 29)  (5.29

Calculation of these standard integrals is a separate task

and will be discussed in the next section.

C. Calculation of the two-loop integrals Egs.(5.19—(5.17)
In this section we denote =k/k for any vectork, dn, is

the area element of the uni-dimensional sphere and

(---) is the averaging over the sphere. In particular,

f dek...:f:%f dn =SdJr:k?|;<~->
(5.23

with Ny from Eq.(1.3); Sy=27%%T(d/2) is the surface area

of the unit sphere.
For any two vectors with the angl& between them, the
following formulas will be useful:

o (2n—1)!!
an=(COS™) = G o v an—2) 29
with n=1,2, . .. (obviously, ¢y=(1)=1). From Eq.(5.29

one easily obtains

with the integral

2n+2
(m)_f k1+“’fm (k2+q) =m (D).
(5.30

Using the identity

1
Ip(m)=— ZD”‘I n(m), Dyp=mdlom, (5.3)

which follows from the last equality in Eq5.30), the inte-
grall,(m) can be represented in the form

= mgzaJ:

dk k
kel k2+1

2n+2
) , (5.32

where the number of integrations is reduced and the pole in

¢ is isolated explicitly. Expanding the integrand in £§.32
in ¢ and neglecting the terms of ord@(e) and higher with
the desired accuracy we obtain
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. dkk2n+1
28 -1_
[,(Mm)=m L (k2+1)2”+2(8 In k)
L, (n)? ~
2 m(s -8y, (5.33

where the quantities,, needed only for the three-loop cal-
culation, can be represented as finite sums,

2n+1)1 O (=D (1/2) k-1
anln2+( ) E )*[(1/2) ].
k=0 kI (n—Kk)!(n+k+1)?
(5.34
For the integrald,, in Eq. (5.17) this gives
n|2—n—2
—28
hp=m~2C5(d— 1)2 d(d+2)---(d+2n+2)
X(—e *+B,); (5.353
n|27n72
— 22
hy=m"=Cy( 1)2 5 d(d+2)---(d+2n+4)

X(—e 1+B,). (5.35h
Expanding the integrand in E¢6.16) in 2(k-q) and pro-
ceeding as above fdr,,, we obtain an analogous expression

for the integralh,

n|2n—1

h= -(d+2n+4)

—2€C2(d2 1) 2

d(d+2)--

X(—e 1+ B,). (5.350

The O(e 1) terms in Egs.(5.39 can be expressed in
terms of the hypergeometric seriese, e.9.[27])

ab

a(a+1)b(b+1) 22
F(a,b;c;z2)=1+ ?z+ _

c(c+1) 2! I
(5.39

as follows:

m~2°Cj(d—1)
4d(d+2)

+(d+2)Cx(d) ],

h,= [—e 'F(1,1;d/2+2;1/4)

(5.373

_ mZ*Ci(d*-1)
TR

T(d+4)Cy(d)],

e F(1,1:d/2+3:1/4)
(5.37b

ZSC (d2 )
2d(d+2)(d+4)[

+(d+4)C(d)],

e F(1,1;d/2+3:1)

(5.379

and for theO(1) terms one has
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©

Gld=2 s (5.388

! 750 40(d/2+1) - - - (d/2+1+n)’ -

. B,

=Cy(d+2),

2 4"(d/2+2)---(d/2+2+n) Ca(d+2)
(5.38b

_ i n!B,

C(d)_n=o (d2+2)---(dl2+2+n)" (5.380

It is worth noting that the series entering into E@s37) and

(5.38 are convergent; this fact is nontrivial for since|z|

=1 is the convergence radius for the corresponding series.
ForF(---) in Eq. (5.379 one has=(1,1;d/2+3;1)=(d

+4)/(d+2) for anyd, while the expressions fd¥(---) in

Egs.(5.373 and(5.37b simplify only for integerd; see[27].

In particular, ford=2 andd=3 one has

d=2, F(1,1;d/2+2;1/4=8[ — 3In(4/3)+ 1]=1.0956,

F(1,1,d/2+ 3;1/4) = 6[ 18In(4/3) — 5]=1.0696,

C,=0.3671, C,~0.2411, C=0.2917; (5.393

d=3, F(1,1,d/2+2;1/4=10(7+/3— 16/3=1.0806,
F(1,1:d/2+ 3;1/4) =14 — 1573+ 82)/5~=1.0613,

C,=0.2912, C,~0.2056, C=0.2412: (5.399

and for the other integed analogous expressions can be
obtained from the recurrent relation

3F(1,1;d/2+ 2; 1/4) + (d+ 2)F(1,1;d/2+ 3; 1/4)/(d+ 4)= 4
(5.40

valid for all d. In Eq. (5.39 we also included the numerical
values for the coefficients, , andC obtained from the series
(5.38.

Substituting all these expressions for the integrals into
Egs.(5.18 and(5.19 gives the final answers for the coeffi-
cientsA; of the diagrams Nos. 22, 31,

u?(u/m)?*(d*-1)

diagram No. 22, A;=

16d(d+2)
S
2 T2 299
u?(u/m)?¢(d—1)2
_llm(d- 1) 5.4
16de?
, u?(u/m)?e F(1,1;d/2+3;1/4)
dlagram No. 31,A1=m ? 4(d+4)8
1
—§C4(d) :
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u3(/my2e(d—1)[ (d—2)(d+3) set of relations that allow one to express the coefficiénts
o= 5 in Eq. (4.20 for any given diagram in terms of the scalar
24d(d+2) 3¢ integrals(4.419. We recall that all the external momenta in

] ) the diagrams are set equal to zero.
_ (d—1DF(,1,d/2+2;1/4) We begin with the normalnot factorizable diagrams.
4e For these, the integration momerka q, | are always as-
(d+1)F(1,1:d/2+ 3: 1/4) 1 signed to the horizontal lineé®v) in the following order:k
(d 1)(d+2)C,(d) flows via the uppermost lingj flows via the middle line, and
3(d+4)e | flows via the lowest line. Then in order to determine the
momenta for all lines in the diagram, it is sufficient to show
(5.42  (by an arrow the chosen direction of the momentum in each
line. The needed derivatives on the lines are always im-
_ plied (for the one-loop and two-loop diagrams, they were
with F(---) from Eq. (5.36 and C,C;4 from Eq. (5.38.  shown explicitly by dots in Fig. 2 The numerical indices

1
- g(d-l— 1)Cy(d)

From these expressions, using the standard general schemep . of theupper dots are always chosen to increase from
one obtains the contributions of the diagrams Nos. 22, 3¥he |eft to the righflike in Eq. (4.17) and in the diagrams in
into Eq. (5.22 and then the two- Ioop contributiofiZ: '], Fig. 2]; the positions of the letter indicea,b, . .. in the
into the renormalization constadiz®, presented earlier in diagram are always shown explicitly. This information al-
Ref.[10]. lows one to completely restore the configuration of the mo-
menta and the form of the index structur@s39 for any
VI. THREE-LOOP APPROXIMATION diagram.

Now we turn to the description of specific diagrams in
this notation. For any diagram, we give the directions of the

All the needed three-loop diagrams with the symmetrymomenta, positions of the indicesb, . . ., andforms of all
coefficients are given in Fig. 1. Below we shall describecofactors in Eq.(4.38 in the same form as in Eq$5.1)—
them in more detail and give in a compact form the completg5.3):

A. Scalarization of the three-loop diagrams

The two-ray diagram No. 23,

=1/2x1x1, ¢y = (1P))[(q + 1) Ac(q + 1),

OE = Be1€q+1€k+qql,

No 55 I'=nl with x=k+q+1, P=A. 6.1

The three-ray normal diagrams,

AL LN\ AN 6.2
No 32 No 34 No 35
For these, one has
diagram No. 32,C=1X1X1, ¢s=(IPg),
pe=4€€qs (€t €q1T Ecrgrl),
1=n2 with x= k,y=q+l, a=P(q+]),
P=P [(x-a@)=0]; (6.3
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diagram No. 33,C=1X1X1, ¢=[IP(q+1],
be=2€(€qt €t €qy 1) (€T €kt T €Ekiqri)s
1=n2 with x=q, y=k+I, a=Py,
P=P, [(x-@)=0]; (6.4

diagram No. 34, C=1x1X1, ¢=[qPx(q+1)],

Pe=2¢€(eqt €t €q11) (€ €k gt €k grl)s

=n2 with x=I, y=k+q, a=Pl,

P=P, [Px=0]; (6.5

The four-ray normal diagrams,

¥
i

No 42

c d
No 43

For these, one has,
diagram No. 42, C=1X1X1, ¢.=1,
Pe=2€(€qt €1+ €q1 1) (€T €qT €T € gr1),
1=n3 with x=k, y=q, z=I, a=P(q+l),
B=Pgl, P=P,
[(x-a@)=0,y-B)=0,Pz=0]; (6.8
diagram No. 43,C=1/2X1X2, ¢s=(qPyl),
pe=4€(eqt €)(eqt €+ gt €c41),

=n4 with x=q, y=I, z=k—q, P=P,,

[Py=0,P'x=0]; (6.9
diagram No. 44, C=1/2X(—1)X2, ¢s=1,

Pe=2€(€eqt € €_q) (e T €qt €xr T €1-¢),

PHYSICAL REVIEW E 64 056306

diagram No. 35,C=1X1X1, ¢;=(qP\l),

de=2€|(€qt €t €q-1) (€ qT €1t €q-1),

1=n2 with x=k+|, y=q—I, a=Pg, P=P.
(6.6

The structurel =n2 from Eq.(4.39 is the same for all
these diagrams; the corresponding quantifiesare deter-
mined by the general formul&d.43 in which the specific
values of the vectors,y,z, & and projectord for any given
diagram should be substituted from E¢8.3)—(6.6):

(6.7)

1=n3 with x=k, y=q, z=l-q, a=P, B=P,
P:P|

[(x-@)=0, (y-B)=0, P(y+2)=0];  (6.10

diagram No. 45,C=1X(—1)X1, ¢s=1,

Pe=2¢€(€qt €1 €+ 1) (€t €T €q— T €q41),

=n3 with x=k, y=I, z=gq—k, a=Pq,

B=P,, P=P,

[(x-@)=0, {(x+2z)-B}=0,Py=0]. (6.11
Three diagrams have the index structure n3 from Eq.
(4.39 and one diagram has the structuren4; (x-a)=0
for all the diagrams witH = n3.

Below we give the expressions for the coefficieAtsfor
the structures =n3,n4, analogous to Eqet.42 and(4.43.
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For | =n3 from Egs.(4.39 and(4.40 using the relationX- @) =0 one obtains

12A1=(XPX)[(y- @)(z- B)+(y- B)(z- @) ]+ (YPY)(z- @)(x- B) + (zP2)(x- B)(y- @) +2(xPY)[(y- @) (z- B) + (z- a@){(x+Yy
+2)- BH1+2(xP2)[(y- B)(z- @) +(y- a){(x+y+2)- B]+2(yP2)(x- B)[(z+Y)- al;

728,=U{(d=D)[(y- @)(z: B)+(y- B)(z- &)1+ 2(yPa)(z: B)+ 2(zPa)(y- B) + 2(yPB)(z- @) + 2(zP B)(y- @)
+2(yPz)(a- )} +U{(d=1)(z- @)(X- B) +2(XPa)(z- B) +2(zPa)(X- B) +2(XPB)(z- a) + 2(XPZ)(a- B)}
+Us{(d=1)(y- @) (X- B) +2(xPa)(y- B)+2(yPa)(X- B) +2(XPB)(y- @)+ 2(xPy)(a- B)} +2(d—1)[(Z- )
X(z-B)(x-y) +(y- @)y B)(x-2) ]+ 2[(zPa)(z: B)(X-y) +(YPa)(y- B)(X-2) + (XPa)(X- B)(Y-2) +(zPB)(z- @)
X(x-y) +(YPB)(y- @)(X-2) ]+ 2(a- B)L(XPX)(y-2) +(YPY)(X-2) +(zP2)(x-y)];

9A;=U4{(d—1)(a- B)+2(aPp)}.

Here and below in Eq6.14)
Ui=x2+2(Xy)+2(X-2), Up=y?+2(x-y)+2(y-2),
Us=2"+2(x-2)+2(y-2),
Uy=x3(y-2) +y2(X-2) + Z2(X-Y) + 2(X-Y) (X- 2) + 2(X-)
X(y-2)+2(x-2)(y-2). (6.13

For 1=n4 from Eq.(4.39, using the relation®y=0,
P’x=0 in Eq. (6.9 one obtains

6K1= (xPx)(yP'z) +2(xPz)(yP'z)+ (xPz)(yP'y),

36A,=(d—1){U;(yP’2) +U,(xP2) + (XPX)(y-2)
+(YyP'y)(x-2)+[2(P+P")z](x-y)} +
+2{U4(yP'Pz)+U,(xPP’'z)+U3(xPP"y)
+[z(PP'+P'P)z](x-y)},

9A;=U,{(d—1)2+ 2 t(PP")} (6.14)

with U;-U, from Eq.(6.13); tr(PP’) is the trace of a matrix
product.

(6.12

Nos. 21, 22 already include their own symmetry coefficient
1/2, we conclude that, in order to obtain the needed symme-
try coefficient in Fig. 1 for diagrams Nos. 46, 51, an addi-
tional symmetry coefficienflike C in Eq. (5.20] is not
needed, while for diagram No. 61 it should be taken to be
1/6.

Therefore, taking into account Eqg.18 and(4.27), we
obtain for diagrams Nos. 46, 51, 61,

diagram No. 46,1 =V 534 Byw,w,+ Bow?81,][ Bjwaw,
+BoW2834], (6.15a
diagram No. 51,1'=V 344 B;w W, + Bow? 65,
X[BiW3W,Ws+ Byw? S5,ws],
(6.15h
diagram No. 61,1 =[1/6]V 123456 ByW;W,+ B,w?5;5]
X[B1W3Wy+ Bow? 834][ BiWsWe
(6.159

whereB, , are the known coefficients for diagram No. 21,
B1.in Eq.(6.153 are the analogous coefficients for diagram

No. 22, andB; , in Eq. (6.15b are the coefficients for dia-
gram No. 31.

Using the relationg4.36), from Eqgs.(6.15 one obtains

+Bow? sg],

Substituting the specific values for the vectors and projec-
tors for any given diagram from Eq$6.8—(6.11) into ex-
pressions(6.12—(6.14 gives explicit expressions for the
corresponding coefficient; . Then, using the additional in-
formation from Eqs(6.8)—(6.11) one obtains the desired ex-
pressions for the coefficients for any diagram in the form
of scalar integral$4.419. All these simple but cumbersome
technical operations are easily performed by means of a
computer. = .

Ngw let us turn to the factorizable diagrams Nos. 46, 51, I (diagram No. 61:[1/6][k18$+3k28§B2+3k3BlBg
61. Diagram No. 46 factorizes to a product of two blocks +k,B3] (6.16
Nos. 21, 22; diagram No. 51 factorizes to a product of the 2

blocks Nos. 21, 31; diagram No. 61 factorizes to a product ofvith the coefficientsk; known from Eq.(4.369 for diagram
three blocks No. 21. Since the quantitiBg for diagrams No. 46, from Eq.(4.369 for diagram No. 51, and from Eg.

T (diagram No. 46=k;B;B/ +k,(B,B}+ B,B})
+k3B,B;,

T (diagram No. 51=k;B,B} +k,(B;B}+B,B})
+k3B,B5,
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(4.36¢ for diagram No. 61. The relation&.16) give the plain expansion of the integrands in the powers of the scalar
desired answers for the three-loop factorizable diagrams. products in some cases leads to a divergent series.
The nonpolynomial dependence of the integrands on the
B. Calculation of the three-loop integrals and anomalous cosines of the angles appears only from the energy factors
dimensions: General scheme ¢g , whose explicit forms are given in Egé.1), (6.3)—
(6.6), (6.8—(6.11). For all the diagrams, the nontrivial fac-
tors in ¢ have the formsy?+12+const@-1) and k?+ g?
mal three-loop diagrams, into the general formuldsi, +12+ some Ilne_ar combination of all scalar products, and in_
) -~ . the expansions in powers of the scalar products, the denomi-
(4.43, (6.12—(6.14) gives explicit expressions for the quan- . . O P
A ) ’ nators will contain powers of the quantitieg<(1<) and
tities A; in Eq. (4.410 for any diagram in the form of poly- (12 42.112) sych expansions converge for all cofactors in
nomials in the scalar products{q), (k-1), (a-1) and -1 \yhich do not contain the “energy’&y. q+1 With the

mOI?L.J“ k,q,lhof ”t].e v?ﬁtc:r?(,q,:l. th | three-| di sum of all three momenta. The cofactors wéh | require
IS worth noting that for all the normal three-loop dia- special consideration. They are present in diagrams Nos. 23,

grams, the productg:A; have the form of sums of mono- 32, 33, 34, 42 and are proportional to the following factors:
mials ink,q,l of order six. In the variables “moduli angles,”

Substituting the specific values for the vectors and projec:
tors, given in Eqs(6.2), (6.3—(6.6), (6.8—(6.11) for all nor-

each of these monomials contains the fadtgrwhich is diagram No. 23, ¢g *= e,{jq+|oc[Q+28]‘1,
canceled out by the analogous factor in the energy denomi-
nator ;= v present in each of these diagrams. It is also diagram No. 32,¢Eloc[ek+ €qr1T ek+q+,]*1
worth noting that these products involve the modus the
power 2 or less(otherwise the integrals ovee would be «[Q+S+(q-1)] 4,
divergenj.

In the three-loop diagrams, we only need the poles,in diagram No. 33, ¢z *oc[ g+ €1+ €]
that is, the contributions of order 2, ¢ 2, ande *. The
following general scheme is used in their calculation. «[Q+S+ (k-]

(1) The integrands are expanded in the set of scalar prod-
ucts k-q), (k-1), (g-1); the results are represented as a
multiple series in these quantities. 1

(2) Then, the angular averagidg- -) is performed with “[RQFS+(k-a)]
respect to the directions of the vectdtgq,l, that is, the
following quantities are calculated:

diagram No. 34, ¢c "o €+ €s g+ €]t

diagram No, 42, ¢c "o e+ €q+ €+ € qri]

-1

Ty =((k-@)"(k-D"(g-N™) (6.1 “QFSIT 619

_ _ _ whereQ=k?+q?+1% andS=(k-q) + (k- 1)+ (qg-1).
with arbitrary integer exponents=0. , From the obvious identitiesk¢+ q+1)?=0, (k—q)?+ (k
(3) The next step is the integration over the modut,|. —1)2+(q—1)2=0, |(k-q)|<kaq, |(k-)]<kl, and |(q-1)|

All the needed integrals reduce to the form <ql, it follows that
f f f Kk2mig22|20s ~Q/2=5=Q, |(k-a)|=Q/2, |(k-N[=Q/2,
k1+s 1q 1+e |1+£ (k2+q2+| )n4(q2+|2)n5 .

6.18 [(g-1)|<=Qr/2. (6.20

It then follows that the factof6.19 in diagram No. 42
can be expanded in the powers of the r&iq with |S/Q)|
=1, while for No. 23 this is impossible: in the integration
region, there is a subregion of the same dimensgi@amely,
3xd) in which 2/§>Q. This difficulty can be circum-
ented by means of the shift of the point around which the
expansion is made in diagram No. 23,

where the integer exponentg=0 satisfy the relatiom;
+n,+n3;=n,+ng, so that the integrals contain only loga-
rithmic UV divergencies fore—0. Only the pole parts are
extracted from the integral$.18.

(4) The last step is the summation of the resulting serlesv
They have the forms of a double infinite series with the co-
efficients given byn-fold finite sums G<5); the number of
terms in the latter increases rapidly with the order of the [Q+2S] 1=[3Q/2+(45-Q)/2] 1
coefficient. This summation is the only operation that cannot
be performed exactlyanalytically) and is therefore the only
source of errors in numerical coefficients in expressions like :[2/3Q]n§=:0 [(1-4S/Q)/3]". (629
Egs.(1.13.

Of course, the straightforward but cumbersome operation$he convergence of the series in £6.21) is ensured by the
listed above have been performed with the aid of a computeinequality |(1—4S/Q)/3|<1, which follows from Eqg.

The first step, the expansion in the scalar product$6.20. The equality takes place only in the
(k-qg), (k-1), (g-1), contains some conceptual subtleties and(2x d)-dimensional subregiok+q-+1=0, which has zero
we shall discuss it in more detail. The problem is that themeasure in the (8d)-dimensional integration region and
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does not spoil the convergence of the corresponding series Finally, the relation(3.4) with u, from Eq.(2.18 gives
for the integral[similar considerations ensure the conver-the O(¢®) results for the critical dimensions presented in

gence of the serie&.359 for the two-loop integrah]. Ref.[15] and Egs(1.13.
For the factor(6.19 in diagram No. 32 the following shift
can be used: C. Angular integrations in the three-loop diagrams

The two-loop integral$4.41b involve only two vectork
andg and one angle) between them, so that the procedure
. L . of the angular averaging reduces there to the only standard
with the subsequent expansion in the powers of the fa&io formula(5.24). The three-loop integralg.419 involve three

+(9-1)—Q/4]/(5Q/4), whose modulus does not exceed,qctorsk, g, andl and three angles between them, so that the
unity owing to inequalitie€6.20. Similar expansion$with o0 ation of the quantitie$6.17) is not all that simple.
obvious modificationscan be written for diagrams Nos. 33, Below we present the results of this calculation.

34. o . : . . .. Obviously, the quantity6.17) differs from zero only if all
Such infinite series contain addltlo_nal finite sums origi- e three numbers; , ; are simultaneously even or odd. It is

nated from the powers of the expansion parameters, WhiChq, clear that the quantitg.17) is symmetrical with respect

have the ,f’orms constant Ilnt_aar combmgnon of the scalar any permutation of the exponents, s and with no loss

products. !t is clear that this summation S.hOUId be PETof generality it can be assumed thstis the minimal expo-

formed in first, before all the other summations: only thlsn

order of summations ensures the convergence of the series.
Calculation of the angular integréb.17 and momentum n,=min{n;,n,,ns} (6.23

integral (6.18 is a separate task; it is discussed in the next

two sections. The results for the coefficiedts for all the  [the notation in the formulas below is consistent with the

normal three-loop diagrams are presented in the Appendixassumption6.23)].

The ¢ 2 contributions in all diagrams have been found ana- The straightforward calculatioffirst, the averaging over

lytically for general space dimensionality(in order to cal- the direction of one momentum, s&y and then the averag-

culate them, it is sufficient to neglect all the scalar productsng over the angle between the two remaining vectpend

in the energy denominatorgg), while the e 2 and &1 I) leads to the following result for the quantit.17):

parts have been found for the physical cades?,3 and in

[Q+S+(q-D]"*={5Q/4+[S+(q-H—Q/4]} *

the larged limit; the results have been presented in R&6] Thyngn,= kM1t N2t Ng| ”2+“3ﬂ1n2n3, (6.24
(of course, this calculation can be made for any fixed given
value ofd). where the moduli of the vectors are isolated explicitly, and

Now, using the standard scherts=e Sec. IV, one finds
the three-loop contributith;l]3 in the expansiort4.7) for
the renormalization constaf ! . The anomalous dimension
YE=17n IS given by the relationye=— Bd,InZ:*; see Eq.  with coefficientsa,, from Eq.(5.24 and
(3.4). Substituting Eqs(2.17) and(4.7) into the last relation

Tn1n2n3:an1+n2an2+n3K(n11n2)Tn1n2n3 (6.29

expresses the anomalous dimension in the coefficients _ 2"2n,!1[(ny+ny)/2]!
[Z]«. Within our accuracy one obtains K(ny,nz)= (ny+ ) [(n;—N)/2]!
ye(w =[e—u(d—1)/2d [ Z¢ 1y + 2[ 2 1, [ 27 112 _ (M N# )0y~ Nt 4)- (M ng)

1 19 ot 143 (ng+1)(Ng+2)---(Ng+ny) '
+3[Ze 13— 3[Z¢ Tl Ze 1o+ [Ze 711} (6.22

(6.26
Substituting the known expressions f{)Z,?l]k into Eq. n,/2
(6.22 gives the anomalous dimensigip(u) to orderu®. Tonn= Yy,
Since the quantityy, is UV finite, that is, finite at: =0, 1EE k=0
the pole parts must cancel each other in E§22. This e
implies some exact relations between the senior poles in the y 277 ! [(ny=Nn2)/2] a1 -2k 62
quantities[Z;l]k withk=2 (¢ 2in [Z,;l]z ande 2, & 3in KTkl (ny— 2K)![(ny— ny)/2+K]! an2+n3. (6.27

[Z;1]3) and thee ~ ! parts of the previous orders in Such

relations provide an additional possibility to control the ab-\ye recall that the numbers, , 5 in these expressions have
sence of calculational errors. In fact, the knowledge of senioghe same parity, and tha is the minimal one according to
poles & ¥ with k=2) is needed only to check this cancel- Eqg. (6.23. The upper limit in the sun6.27) for odd n, is
lation; the nonvanishing contributions in E®.22 are com- | ,nderstood as the integer partrofi2.

pletely determined by thes™* terms in the quantites  The following special values and recurrent relations for

[Z¢ 1. In the MS scheme, the anomalous dimensi@u)  the quantityK in Eq. (6.26 are useful:
appears independent ef this is a consequence of the rela-

tion Zg=1+ only poles ine. K(m,0)=K(m,1)=1, K(m,m)=m!/(2m-1)!!,
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K(m+1m+1)/K(mm)=(m+1)/(2m+1), ‘ k2Mg2n:
Eh 2, 42,12
K(m+2,0)/K(m,n)=(m+1)(m+2)/(m—n+2) (kg 19"
X (m+n+1). 6.29 (D=1 1 ”gg+”§3
~ 12(ng,—1)! 2 2e\ &k 1k
For the termsy, in the sum(6.27) one has
(6.33
Y():l, )
with n;+n,=n, andn, ,>0;
n,—2k)(n,—2k—1)(d+ny,+nz—2k—2
Yk+1/Yk ( 2_ )( 2_ )( 2 3 ) k2n1an2
2(k+1)(ny—ny+2k+2)(ny+ng—2k—1)" l,=
(6.29 (K2+q2+12)M(g?+12
Using these relations, the quantitiés.26) and (6.27) are (ng—=1)!'(ny,—2)! 1
easily calculated by a computer. - 12e(n,—1)! ? 2¢

D. Modular integrations in the three-loop diagrams
X

2 "ty
: . —t 6.3
Let us turn to the calculation of the three-loop integrals (n,—1) g Z ] (6.34
(6.18 over the modulik,q,!, which arise as coefficients in

the expansion of the quantitiés in Eq. (4.410 in the scalar  with n;+n,=n,+1, n;>0, andn,>1;

products k-q),(k-1),(q-1); see Sec. VI B. For the complete

. o .. . 2 2n
three-loop calculation, it is sufficient to know some special k ql
cases of the general integr@.18, which we denotd ;—Iq 5= [(k2+q2+lz) G2+ 12 }
in what follows. Below we give the explicit answers for
these intergals, with the precise specification of the indices [(n—1)!2 1

n,;—ns, and then turn to the derivation. Only the pole parts
e 3 e 2 ande ! of these integrals are given, which is
sufficient for the calculation of the quantitiés within our

accuracy. We shall use the notation

2n—-1 1
—=13B,_1+ >, —)l (6.35

k=n

T122n-1)!| g2

with n>0 andB, from Egq. (5.39);

k2q2(n+l)|2n 1
HF=], k1+J1 q“SL Era (639 T kT qr 1) (12t =3lsi (639
for any functionF=F(k,q,l). The integralsl,—l4 are as - k2 1 6.3
follows: 7= K2+ ?+12| 363 .
k2n1 2n2|2n3
IIEI[ K%+ 2+|j "a(q?+12 ”5] lg=1 Ko _ 6.3
(k*+g"+19)"(q"+1%) =N T 2@ | 6e® (6.38
(ni—)'(n,— 1) (ng— 1)1 (ny—n—1)!
= (6.32 4
126 (N;— 1)1 (Ny+nz—1)! o [ q ] 1 1 1
Eh 2.0 22 12y 24 12 2.3 2 12"
with ny+ny+nz=ny+ns, Nny>ny, Ny,3>0, andns=0; (K +a?+1%)(Q*+1%)] 387 12 128(6 39
_ q*"2l %" Now let us turn to the derivation of expressiofts31)—
2 (K24 2+ 12)"4(g2+12)"s (6.39. The integrald, , can be obtained from the generation
function
(- ng-ntf 1 1S ”il 1 1
TTI2nn-1) |2 el & kK &k 2
R(a,b;m)= 1+e 1+2¢ 2 2
ny—1 ny—1 mk="¢Jmp T (ak +bp )
1 1371
X kzl E—E ~ E)l (6.32 B m-3(1 1| "
= 6b ;'an( a)+0(1)|. (6.40

with ny+nz=ns+ns, ny3,>0, andns=0 [in Eq. (6.32
and all the formulas below, any sum with the upper limit We shall also need the first terms of theexpansion of the
lesser than the lower one is understood as equal toj;zero integral
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w2
J(p,q)= f de(cose)?P 17 2(sing)2a-172
0

_T(p-el2T(q—el2)

2I'(p+qg—e¢)
_T'(p)l'(q)
= oT(prq |1 TE|VPTA - 2¢(p)—2¢(q)“
+0(&?)
_(p~1)!(g-1)! Practy 1Pl
" 2ptg-n |l & K 2&K
1901
_ _ 2
5 2 ]| +0?), (6.41)
where I'(z) is the Euler gamma function ands(z)
=dInT'(2/dz
The calculation of the quantity R=R(a,b;m)

=m 3*R(a,b;1) is similar to the derivation of Eq5.33.

The operatiorD,,=md/dm is applied to the double integral
in Eq. (6.40, which reduces it to the sum of two single

integrals and explicitly isolates the pole factor?,

R lD R
=~ 5D
m73s © o dp p2
T T3 fdk Tte 12 +J 1+26 2|
L KR (akle b)) J1 ptt2e (atbp?)

Now one can set =0 in the integral ovek (it remains finite
at e=0). The pole ine in the integral ovelp comes from
largep and it can be isolated explicitly,

pltee -

a(= dp 1
b 1pl+28 (a+bp2)

J“ o p* 1

1 pl+28 (a+bp2) b/,
1 a(f> dp
— 2 — 4+ 0(e),

" 2bs fl p(a+bp?) (e)

which immediately leads to the answ@:40.

In the integrall; the pole contribution comes from the

part of the integration region where all three momenig,|
simultaneously tend to infinity, and i there is also a pole
contribution coming from the subregion whegd simulta-
neously tend to infinity at fixed finitk. This means that the

pole parts of the integrals , are not affected if one changes

to the polar coordinatep, ¢ (q=p cose, | =p sing) with
the integration region € o< /2, 1<p<, that is, the fol-
lowing replacement is performed:

o o /2 o
J qu d|~~—>J dgoJ pdp---.
1 1 0 1
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w2
|1_J’ d(p(COSgD)ZnZ_1_€(Sing0)2n3_1_8

dp k2n1p2n4—2n1
J' kl+sf1 p1+28 (k2+p2)n4 '
This integral can be expressed usii(g,q) from Eq.(6.41)

and the derivative of the generating functi@a,b;m) from
Eq. (6.40 as follows:

1=[(ng= D)1 1(ny,nz)(—dx)™

(—dp)™ "7 R(a,0;1)[-p—1 (6.42
with d,=dlda, dp=dldb, which immediately leads to the
answer(6.31). Note that thes ~2 contribution inR depends
only on b [see EQq.(6.40] and therefore vanishes in the
above expression owing to the differentiation with respect to
a (we recall thatn,>0 for I,). Although the integral, is
formally given by expressiof6.42 with n;=0,

l,=[(ng— 1)1~ 23(ny,n3) (= dp)"™ R(10;1)|p=1,
(6.43

the ¢ 2 part of the function(6.40 survives in Eq.(6.43
owing to the absense of the derivativg, so that theO(¢)
contributions should be taken into account in the integral
(6.41). This explains the sharp difference between the final
expression$6.31) and(6.32 for the integrald; andl,.

The relationg6.33—(6.36) follow easily from Eqs(6.31)
and (6.32. The result(6.33 for |5 is obtained from Eq.
(6.32 atny=0 using the symmetries of the integrand. In its
turn, the result(6.34 for |, follows from Egs.(6.31) and
(6.33 if the obvious identity q?"2/(g?+1%)=q?("2~1)
—q?M2712/(g?+1?) is substituted on its left-hand side.
The result(6.35 for |5 is obtained using the substitution
K2/(K2+ g% +12)=1—(q?+1%)/(k®+g?+1%): in the first
term, the integral ovek is trivial and the remaining integra-
tions overq,| are performed using Eq$5.30, (5.33, and
(5.34), while the second term reduceslto The integral ¢ in
Eq. (6.36 reduces td 5 after the symmetrization of the inte-
grand with respect tq,l.

The resultg6.37) and(6.38 follow from the obvious re-
lation 1{1}=¢"2 in Eq. (6.30 after the symmetrization of
the integrands with respect fqq,|. The last relation6.39
is obtained using the substitutiog?/(g%+1%)=1—12/(qg?
+12): the first term coincides with, and the second one is
given byl, with n,=n;=n,=ng=1.

E. Anomalous exponents at largel

In this section, we shall briefly discuss the behavior of the
coefficients A% in the expansion(1.10 for d—o. The
model (1.1)— (1 3 has no finite upper critical dimension,
above which the anomalous scaling vanishes. It disappears
for infinite d [28], but reveals itself in th&(1/d) approxi-

The integration regions in these two expressions are nanation[6]. This fact confirms the relevance of the larde
identical, but the values of integrals differ only by an unes-expansions for the issue of anomalous scaling; see also Refs.

sential contribution, finite a¢—0. Forl, this gives

[29,3Q for the discussion of the Navier-Stokes problem.
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FIG. 3. Anomalous dimensiofp= y3, for d=3 (a) andd=2 (b)—(d). Dashed line: exact solution by Ref$,31]. Solid lines in(a) and
(b): first, third, and second approximations of the plairexpansion(from above to below Solid lines in(c): first, third, and second
approximations of the improvexi expansion(from above to below; the third approximation is practically indistinguishable from the exact
solution for all 0<e<2). Solid lines in(d): first, second, and third approximations of the invegsexpansionfrom above to beloyw

It follows from Egs.(5.24 that for d—oo, the angular gence ofs expansions in models of turbulence and the pos-
averagesr,,=(co<"9) behave as,,>d " (each additional sibility of their extrapolation to finite values af~1. The
factor codd introduces additional smallness indl/ Then  knowledge of the three terms of theexpansion in model
from Eqgs.(6.24—(6.27) for the average$6.17), one obtains (1.1)—(1.3) allows one to discuss its convergence properties
Tnlnznaocd‘(”l+”2+”3)’2 for n;,3 even and Tnyn,n, and to obtain improved predictions for finitg in reasonable
ocd (TN st D2 for ), 5 odd. This means that, in order agreement with the existing nonperturbative results: analyti-

to find the behavior of the coefficients for larged to any ~ cal solution of the zero-mode equations for2 [6], nu-
given finite order in 1d, one needs to take into account only Merical solutions fom=23 [7], and numerical experiments
finite number of terms in the expansion of the integrands iffor n=4 [23,24 andn=6 [25]. _ _
Eq. (4.37D in the scalar product: q), and integrands in Eq. In Figs. 3a) and 3b), we show the anomalous dimension
(4.379 in the set of scalar product&(q), (k-1), (q-1). ¥= 5= 72U, ) for d=3 (a) and 2(b) in the O(¢), O(&?),
The d dependence of the coefficient!) in Eq.(1.10 is  andO(s?) approximationgfrom above to below the latter

known from Eq.(1.11), while the quantitiess?, A®) can  two obtained as simple sums of two and three terms otthe
be found as a series indLto any given order as explained €xpansion, respectively. The dashed line corresponds to the

above. For general and| to order 142, we have obtained ~€Xact solution by Ref.6]; see also Ref.31] for the special
casesd=2 and 3. Analogous diagrams for the cases3,

Ap=e[—n(n—2)(1—2/d)/2d+ (1/2)(1—2/d+1/d+ 2/d?)] I=1 andn=4, =0 can be found in Ref.15].

) s 3 All these figures show that the agreement betweerethe
+3e%(n—2)(n—1)/4d"+e°(n—1)[1.74988n—2) expansion and nonperturbative results for smaiiproves
—0.624 916]/d%+O(&%). (6.44 when the higher-order terms are taken into account, but the

deviation becomes remarkable fer-1 and decreasing.
Note that thee? and 2 contributions decay fod— Furthermore, the convergence of theseries appears more
faster than M in agreement with th©(1/d) result obtained irregular ford=2, while the forms of the nonperturbative
in Ref.[6] for A,,o. Moreover, from Eq(6.44) it follows that  results are not much affected by the choicedof
the leadingO(1/d?) terms in these contributions vanish for ~ Such behavior can be naturally understood by the ex-
n=I, so that the decay at—% becomes even faster. For ample of the exact analytical result fgr= 3, [6], which can
n=I| we have obtained be written in the form

Apn=en/2+n(n—1){e/(d—1)(d+2)—&’[1+(2n 2y=—(d+2+¢&)+(s+e.)(ete ),
—7)/d]/d3—£3(3n—8)/2d* + O(&*) (6.45
with the accuracy oD(1/d%).

e.=[d?*+d+2=*8d(d+1)]/(d—1) (7.1

with e,e_=(d+2)2 It is useful to rewrite the smaller

VIl. CONVERGENCE OF THE & EXPANSION, INVERSE ¢  quantitye _ in the form

EXPANSION, AND COMPARISON WITH i
NONPERTURBATIVE RESULTS g_=(d=1){1+[1+3d+v8d(d+1)]*}. (7.2

An important issue that can be discussed on the example From these expressions it follows that the corresponding
of the rapid-change model is that of the nature and convers expansion has the finite radius of convergesce ranging
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from 0 to > whend varies from 1 to= (in particular,s_ ki -
~1.1, £,~145 ford=2, ande_=~2.1, £,~11.9 ford /
=3). Hence, the naive summation of theexpansion fory =0
works only in the intervak<e_, which decreases almost /
linearly with (d—1). Since the singularity in E(.7.1) oc- i /
curs for negative, it affects strongly the convergence of the /
e expansion but is not “visible” in the form of the exact e y
curve for positives, in contrast with the singularities occur-
ring ate =2 in higher-order critical dimensionl§,8,23,24.
Therefore, in order to recover the behavionofrom its e
series for largere, it is necessary to isolate explicitly the
singularity ate = —e _ in Eq. (7.1, thus changing it to a kind £
of improved8 expansion’ whose radius of convergence is 0702040608 112141618 2 0 02040608 112141618 2
determined by a more distant singularity. Th_is can be done, FIG. 4. Anomalous dimension=y%, for d=3 (left) and d
for example, by introducing the new expansion parameter _, (right): the O(e) approximation, the third-order approximation

=Vete_—Ve_, that is, & =x’+2x\e_. Then EQ.(7.)  ofthe inversey expansion, and the third-order approximation of the
can be written in the form plain ¢ expansion(from above to beloyw Dashed line: numerical

solution by Refs[7].
2y=—(d+2+2xVe_+x%)+(x+e_)
the character and location of the singularity, which deter-

XX+ 2x\e_+e.. (7.3 mines the convergence properties of the pkaiexpansion.
The difference with the models of critical phenomena,

The convergence radius of the expansioxis found from  wheres series are always asymptotical, can be traced back to
the equationx®+ 2x\/s _+&, =0 with the solutionsx.= the fact that in the rapid-change models, there is no factorial
—Ve_=*iye,—e_ and is therefore equal tx.|= Je.. growth of the number of diagrams in higher orders of the
For positivex ande, this corresponds to the convergence forperturbation theory. The divergence fdr~1 is naturally
0<x<\e, or, equivalently, Ke<e,+2Je_e,=¢, explained by the fact that the transverse vector field does not
+2(d+2). exist in one dimension. We also recall that the RG fixed
The improvement of the convergence is illustrated by Figpoint diverges ati=1, see Eq(2.18), so that the coefficients
3(c), where the exact exponent for d=2 is shown as a of thee series diverge for all dimensions,, .
function of e along with its first &), second x andx?), and It is then natural to assume that theseries for allA
third (x, x2 andx®) orders of the improved expansion, in ~ also have finite radii of convergence with the behavior simi-
which the variables is also expressed as a functionsofOne  lar to that ofe _ in Eq. (7.2). Therefore, in order to improve
can see that the convergence of trexpansion appears more their convergence and to obtain reasonable predictions for
regular and that its third-order approximation is hardly dis-finite values ofe, one should augment plainexpansions by
tinguishable from the exact result for al® <2 (for d  the information about the character of the singularities and
=3, the agreement is even better and for this reason is ndbeir location in the complex plane. Such information can
shown). It should be stressed that it was not the existence obe extracted from the asymptotical behavior of the coeffi-
the exact solution or explicit form of the substituticiie) cientsA% in Eq. (1.10 at largek. To our knowledge, the
that was crucial for the improvement but the knowledge oflargek behavior of thes series remains an open problem for

..... -2

-1

-1

0 92040608 112141618 2 0702040608 1 12141618 2 0702040608 112141618 2

(a) (b) ©)

FIG. 5. Critical dimensiong ,, for d=3: n=6 (a) andn=4 (b,0). Dots connected by dashed lines: numerical simulations by Rz5k.
(n=6) and[23,24 (n=4). Solid lines in(a,b: theO(&) slope, third-order approximation of theexpansion, and third-order approximation
of the plaine expansion(from above to beloy Solid lines in(c): approximations fon=4, obtained using the interpolation formya5)
with p=1 (upper curvg andp=3 (lower curve.
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TABLE 1. CoefficientsA{*? for d=2.

A(12) Agl) A(22) A(Zl) A(SZ) A(31)
Diagram No.  (units of 10 %) (units of 10°3) (units of 10 %) (units of 10°%) (units of 10°%) (units of 10 %)

23 0.23875 —0.06103 0 0

32 —0.56396 0.32532 0.49056 —0.56645

33 1.11953 —0.49834 0.93382 —1.04911

34 —1.05470 —0.12495 0.2434 —0.5770

35 —0.41468 0.30671 —0.63626 0.22330

42 —0.00053 —0.11026 0.06564 —0.16222 —0.54061 0.32914
43 0.02902 0.00249 0.03161 —0.00715 —0.33590 0.07208
44 —0.03113 —0.01477 0.03350 —0.00286 —0.19626 0.21410
45 —0.26802 0.26530 —0.02352 0.03554 0.88599 —0.88934

any dynamical model; the instanton analysis developed ithe origin, that is,e.=—¢_. This square-rootsingularity
Refs.[32] has mostly been concentrated on the behavior ofjisappears in the inverse relati¢i.4), that is, the depen-
the exponents in the limih—-c. One can hope that the dence ofz on v in the vicinity of the corresponding point
implementation of the instanton calculus within the RG2y.=—-d—2—¢.=—d—2+&_ becomes analytic. This
framework will give the solution of this important problem. would also happen for any singularity of the form- 1y,

It turns out, however, that certain elementary consider<(e—¢.)'* with any integekk=0.
ations allow one to improve the convergence of ¢theeries We assume that these features are also typical to the
and, at the same time, to achieve a better agreement with thegher-order dimensions,; and construct the corresponding
nonperturbative results. Let us explain the idea of the im-y expansions. It is important here thgt v, = O(¢g), so that
provement by the example of the exact soluti@nl). We  there is a one-to-one correspondence between these two ex-
expresg as a function of the exponentusing Eq.(7.1) and ~ pansions and three terms of tgexpansion can be immedi-

expand the right-hand side of the resulting exact relation ately obtained from Eqs(1.7), (1.12, and (1.13. This
simple procedure leads to a remarkable improvement of the

convergence and, at the same time, the agreement with the
numerical results, as is easily seen from Figs. 4 and 5.
in vy; this gives the “inversey expansion.” It is easy to see In Fig. 4, we show the anomalous dimensig# y3, for
that, fore~1 and physical dimensiond=2 and 3, the re- d=3 (left) and d=2 (right): the O(¢) approximation, the
spective values of lie within the region of convergence of third-order approximation of the inversg expansion, and
the inverted seriesy<2/(d—1). The improvement of the the third-order approximation of the plainexpansion(from
convergence is also seen from FigdB where the exponent above to below the dashed lines represent the exact numeri-
y= 75, for d=2 is shown as a function of along with the  cal solution by Refs[7] (y=\—3 in the notation of7]).
first (y), second ¢ and %), and third ¢, %, and »°) In Figs. 5a) and §b), we show the quantitied,=A, in
orders of they expansion, expressed in the original variablethree dimensions fon=6 (a) andn=4 (b): the O(¢) slope,
e the approximate curves approach the exact curve from thghe third-order approximation of the expansion, and the
same side and represent the exact re§ult) much better third-order approximation of the plaia expansion(from
than the corresponding approximations of the pkaiexpan-  above to below the dots connected by dashed lines repre-
sion. The improvement is even better fib+ 3. sent the results of the numerical simulations by REZ$]

A simple explanation of the improvement follows. The (n=6) and[23,24 (n=4).
convergence radius for the directseries is determined by In all these cases, the improvement in the agreement with
the singularity on the right-hand side of Hd.1), closest to  nonperturbative results is obvious. It should be emphasized,

e=y(d=1)(d+2+y)/[2—y(d—1)] (7.4

TABLE II. CoefficientsA(*? for d=3.

AR AW AR A AQ) A

Diagram No.  (units of 10 %) (units of 10°3) (units of 10°%) (units of 10°%) (units of 10°3) (units of 10°%)

23 1.03775 —0.14683 0 0

32 —0.52289 0.39815 0.21884 —0.50345

33 1.57028 0.00156 1.56822 —0.76955

34 —1.64375 —0.82315 —0.43185 —1.46450

35 —0.43289 0.51544 —1.07015 0.37916

42 —0.07198 —0.08409 0.02952 —0.22968 —0.83453 0.37471

43 0.02808 0.00152 0.03587 —0.01186 —0.62532 0.07298

44 —0.07726 0.01392 0.00504 0.02341 —0.36121 0.37991

45 —0.33881 0.33509 —0.10389 0.11756 0.94431 —0.95923
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TABLE lll. Coefficientsa;(d) for generald.

Diagram No. a,(d) a,(d) as(d)
23 9(d+1)(2d?+2d-5) 27(d—1)%(d+2)?
32 6(d+1)(d?*+d—3) 2(d*+3d®—3d?—7d+10)
33 —12(d+1) —4(d?+2d—-2)
34 3(d+1)(3d?+3d—8) 3d*+8d3—13d?—22d+ 32
35 —12(d+1) —4(d?*+2d—2)
42 3(d+1)(d>+d—8)/4 (d*+6d3+5d?—16d+32)/8 —4(d®+2d—-2)
43 —6(d+1) (d®+d?>—4d+8)/2 d*+4d3+d’-6d+8
44 -6(d+1) (d®+d?—4d+8)/2 d*+4d3+d?—6d+8
45 3(d+1)(d®>+d—8)/4 (d*+6d3+5d?—16d+32)/8 —4(d?+2d-2)

however, that even the plaia expansion captures some dashed lines. It is also worth noting that the value of the
qualitative features of the dimensions, established in the coefficientc, for p=1 (determined by the behavior at
numerical simulation§23—23: the quantity|A,| increases —2) appears rather close to its value fo= 3 (determined
with &, achieves a maximum at some point inside the intervaPy the e expansiol which demonstrates the robustness of
0<e&<2, and then decreases to zero; the height of the maxthe results obtained by the above procedure.
mum increases and its position moves to the lefh @gsows
from 4 to 6 ord decreases from 3 to Z§,—n{,=A,, in the
notation of Refs[23-25). To conclude, we have studied the inertial-range anoma-
It is no surprise, of course, that the disagreement betweelpus scaling of a passive scalar quantity advected by the
the perturbative and nonperturbative results becomes rath&@aussian velocity field, white in time and self-similar in
strong fore>1; this can be explained, for example, by the space. The corresponding stochastic probl&r)—(1.3) can
effect of the singularity ate=2 in the exact solutions be reformulated as a field theoretic mod2l1), which al-
[7,8,23,24 and by insufficient number of the known terms in lows one to identify the anomalous exponents with the criti-
thee andy series. For the case=4, d=3, the situation can cal dimensions of certain scalar and tensor composite opera-
be improved by an interpolation formula that takes into actors built of the scalar gradients and to calculate them within
count the first terms of the expansion along with the as- the RG and OPE approach in the form of a regular perturba-
ymptotical behavior of the dimensiah, in the vicinity of tion expansion, similar to the well-knownexpansion in the

the opposite edge=2, known from the numerical simula- RGEth?orytﬁf critical lbehavior. . ed to ord
fion [23.24: A= —[0.06 (2—&)+1.13 (2—£)%2]. In par- arlier, the anomalous exponents were presented to orders

ticular. one can choose €2 [10-12,14 and £3 [15]; the main goal of the present
' paper has been the detailed explanation of the corresponding

VIIl. CONCLUSION

A= —[Crg+Coe+ Cas3+ - - - +crek+ - - - 170.062— calculational techniques and derivation of the three-loop re-
4 [Cre+ o0 3* ke 110.062-¢) sult, including the anisotropic sectors. Owing to the com-
+1.132-¢)%2. (7.5  parative universality of the RG and OPE formalism, these

techniques can be applied to other models of dynamical criti-
The first coefficientsc;—c,, are determined by the require- cal phenomena and systems far from equilibrium: passive
ment that the expansion in of the right-hand side of Eq. advection by the non-Gaussian velocities with finite correla-
(7.5) reproduces the firgt terms of thes expansion forA ,, tion time, stochastic Navier-Stokes equation, and so on; see
known from the RGtherefore, in practice one can only take Refs.[13,21,22. _ _
p=<3). The values of these coefficients, once determined, Another scope of the paper has been the discussion of the
will not change if one takes a larger valuemfThe remain-  convergence properties of teeexpansion and the possibility
ing coefficientsc, with k>p should be chosen to reproduce of its extrapolation to finite values ef. It was shown that the
the correct behavior at—2. The simplest possibility is to knowledge of three terms allows one to obtain reasonable

setc, =0 for all k>p+ 1; then the last remaining coefficient Predictions for finites~1; even the plair: expansion cap-
Cps1 IS Unambiguously determined by the relationc(2 tures some sut_JtIe qL_JalltatNe _features (_)f the anomalous ex-
+4c,+8c+ - - +2"+1cp+1)=1 [the O(2—¢) terms in ponents e§tabllsheq in numerical experiments. o

the expression in the first square brackets produce only cor- We believe that in the framework. of the renormalization
rections of order (2 )2 to the behavior of the right-hand of 9roup and operator product expansion, the concept of dan-
Eq. (7.5 side ate—2 and thus should be negleciedhis gerous composite operators and t:hexpansmn will become
procedure gives;=0.241,c,=0.129 forp=1 [upper curve the necessary elements of the appearing theory of the anoma-
in Fig. 50c)] and c,=0.241, c,=0.168, cs= —0.225, c, lous scaling in fully developed turbulence.

=0.103 forp=23 (lower curvg. One can see that the inclu- ACKNOWLEDGMENTS
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AP)=(d—1)a;(d)/430%(d+2)2
APPENDIX: COEFFICIENTS A; FOR THE THREE-LOOP

DIAGRAMS CoefficientsA(*?) are given in Tables | and Il fod=2 and

Below we give the pole parts of the coefficied®sfrom  d=3, respectively; coefficients;(d) are given in Table IlI
Eq. (4.20 for all normal (not factorizablg three-loop dia- for generald.

[1] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov [16] I. Arad, V. L'vov, E. Podivilov, and I. Procaccia, Phys. Rev. E
(Cambridge University Press, Cambridge, 1995 62, 4904(2000.

[2] K.R. Sreenivasan and R.A. Antonia, Annu. Rev. Fluid Mech.[17] K.J. Wiese, J. Stat. Phy401, 843(2000.
29, 435(1997. [18] N.V. Antonov, A. Lanotte, and A. Mazzino, Phys. Rev6H,

[3] G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod. 6586(2000. )
Phys. (to be publishel e-print cond-mat/0105199. [19] L. Ts. Adzhemyan, N. V. Antonov, A. Mazzino, P. Muratore-
[4] R.H. Kraichnan, Phys. Fluidbl, 945 (1968; Phys. Rev. Lett. Ginanneschi, and A. V. Runov, Europhys. Lef5, 801

. (2001).
72,1016(1994; 78, 4922(1997). [20] L. Ts. Adzhemyan, N. V. Antonov, and A. V. Runov, Phys.

[5] K. Gawglzki and A. Kupiainen, Phys. Rev. Letf5, 3834 Rev. E64, 046310(2001).

(1999; D. Bernard, K. Gawezki, and A. Kupiainen, Phys. [21] L.Ts. Adzhemyan, N.V. Antonov, and A.N. Vasil'ev, Usp. Fiz.
Rev. E54, 2564(1996. Nauk 166, 1257(1996 [Phys. Usp:39, 1193(1996)].

[6] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, [22] L. Ts. Adzhemyan, N. V. Antonov, and A. N. VasilieThe
Phys. Rev. B52, 4924(1995; M. Chertkov and G. Falkovich, Field Theoretic Renormalization Group in Fully Developed
Phys. Rev. Lett76, 2706(1996. Turbulence(Gordon & Breach, London, 1999

[7] A. Pumir, Europhys. Let34, 25(1996; 37, 529(1997:; Phys.  [23] U. Frisch, A. Mazzino, and M. Vergassola, Phys. Rev. Lett.
Rev. E57, 2914(1998. 80, 5532(1998; Phys. Chem. Earth B4, 945(1999.

[8] B.l. Shraiman and E.D. Siggia, Phys. Rev. Leff, 2463 [24] U. Frisch, A. Mazzino, A. Noullez, and M. Vergassola, Phys.
Y . - ’ PR Fluids 11, 2178(1999.

(1996; A. Pumir, B.I. Shraiman, and E.D. Siggia, Phys. Rev. [25] A. Mazzino and P. Muratore-Ginanneschi, Phys. Rev63:

E 55, R1263(1997). 015302R) (2001).

[9] B. Duplantier and A. Ludwig, Phys. Rev. Le@6, 247(1991); [26] A. N. Vasil'ev, Functional Methods in Quantum Field Theory

G.L. Byink, Phys. Lett. AL72, 355 (1993; Phys. Rev. B54, and Statistics(Leningrad University Press, Leningrad, 1976

1497 (1996. (in Russian; English translation: Gordon & Breach, London,
[10] L.Ts. Adzhemyan, N.V. Antonov, and A.N. Vasil'ev, Phys. 1998.

Rev. E58, 1823(1998. [27] A. P. Prudnikov, Y. A. Brychkov, and O. I. Maricheinte-
[11] L.Ts. Adzhemyan and N.V. Antonov, Phys. Rev5E 7381 grals and Serie$Gordon & Breach, New York, 1986Vols. 1

(1998. and 2.
[12] L.Ts. Adzhemyan, N.V. Antonov, and A.N. Vasil'ev, Theor. [28] R.H. Kraichnan, J. Fluid Mect64, 737 (1974.

Math. Phys.120 1074(1999. [29] U. Frisch, J.D. Fournier, and H.A. Rose, J. Phys1h 187
[13] N.V. Antonov, Phys. Rev. B0, 6691(1999, Physica D144, (1978.

370(2000. [30] A. V. Runov, St. Petersburg University Report No. SPbU-IP-
[14] N.V. Antonov and J. Honkonen, Phys. Rev. @3, 036302 99-08; e-print chao-dyn/9906026.

(2002. [31] A.L. Fairhall, O. Gat, V. L'vov, and I. Procaccia, Phys. Rev. E
[15] L.Ts. Adzhemyan, N.V. Antonov, V.A. Barinov, Yu.S. 53, 3518(1996.

Kabrits, and A.N. Vasil'ev, Phys. Rev. B3, 025303R) [32] M. Chertkov, Phys. Rev. B5, 2722(1997; E. Balkovsky and

(2001); 64, 019901E) (2001). V. Lebedev,ibid. 58, 5776(1998.

056306-28



