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Calculation of the anomalous exponents in the rapid-change model of passive scalar advection
to order «3

L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, and A. N. Vasil’ev
Department of Theoretical Physics, St. Petersburg University, Uljanovskaja 1, St. Petersburg-Petrodvorez 198504, Russia

~Received 11 June 2001; published 26 October 2001!

The field theoretic renormalization group and operator product expansion are applied to the model of a
passive scalar advected by the Gaussian velocity field with zero mean and correlation function}d(t
2t8)/kd1«. Inertial-range anomalous exponents, identified with the critical dimensions of various scalar and
tensor composite operators constructed of the scalar gradients, are calculated within the« expansion to order
«3 ~three-loop approximation!, including the exponents in anisotropic sectors. The main goal of the paper is to
give the complete derivation of this third-order result, and to present and explain in detail the corresponding
calculational techniques. The character and convergence properties of the« expansion are discussed, the
improved ‘‘inverse’’« expansion is proposed, and the comparison with the existing nonperturbative results is
given.
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I. INTRODUCTION

The investigation of intermittency and anomalous scal
in fully developed turbulence remains essentially an op
theoretical problem. Both the natural and numerical exp
ments suggest that the deviation from the classical Kolm
orov theory@1# is even more strongly pronounced for a pa
sively advected scalar field than for the velocity field itse
see, e.g., Ref.@2# and literature cited therein. At the sam
time, the problem of passive advection appears more ea
tractable theoretically: even simplified models describing
advection by a ‘‘synthetic’’ velocity field with a given
Gaussian statistics reproduce many of the anomalous
tures of genuine turbulent heat or mass transport observe
experiments. Therefore, the problem of passive scalar ad
tion, being of practical importance in itself, may also
viewed as a starting point in studying intermittency a
anomalous scaling in the turbulence as a whole. Deta
review of the recent theoretical research on the passive s
problem and the bibliography can be found in Ref.@3#.

Most progress has been achieved for Kraichnan’s ra
change model@4#: for the first time, the anomalous expo
nents have been derived on the basis of a microscopic m
and within controlled approximations@5–8#.

In that model, the advection of a passive scalar fi
u(x)[u(t,x) is described by the stochastic equation

“ tu5n0]2u1 f , “ t[] t1v i] i , ~1.1!

where ] t[]/]t, ] i[]/]xi , n0 is the molecular diffusivity
coefficient,]2 is the Laplace operator,v(x)[$v i(x)% is the
transverse~owing to the incompressibility! velocity field,
and f [ f (x) is an artificial Gaussian scalar noise with ze
mean and correlation function

^ f ~x! f ~x8!&5d~ t2t8!C~r /L !, r5x2x8. ~1.2!

The parameterL is an integral scale related to the noise a
C(r /L) is some function finite asL→`.
1063-651X/2001/64~5!/056306~28!/$20.00 64 0563
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In the real problem, the fieldv(x) satisfies the Navier-
Stokes equation. In the rapid-change model it obeys a Ga
ian distribution with zero mean and correlation function

^v i~x!v j~x8!&5D0d~ t2t8!~2p!2dE dkPi j ~k!Nk

3exp@ ik•~x2x8!#,

Nk5Q~k2m!k2d2«, ~1.3!

where Pi j (k)5d i j 2kikj /k2 is the transverse projector,k
[uku, D0.0 is an amplitude factor,d is the dimensionality
of the x space,Q(•••) is the step function, and 0,«,2 is
a parameter with the real~‘‘Kolmogorov’’ ! value«54/3.

The infrared~IR! regularization is provided by the cutof
in the integral~1.3! from below atk5m, wherem[1/l is the
reciprocal of another integral scalel . The anomalous expo
nents are independent of the precise form of the IR regu
ization; the sharp cutoff is the most convenient choice fr
the calculational viewpoints. In what follows, we shall n
distinguish the two IR scales, settingL; l . The relations

D0 /n05g05L« ~1.4!

define the coupling constantg0 ~i.e., the formal expansion
parameter in the ordinary perturbation theory! and the char-
acteristic ultraviolet~UV! momentum scaleL.

The issue of interest is, in particular, the behavior of t
equal-time structure functions

Sn~r !5^@u~ t,x!2u~ t,x8!#n& ~1.5!

in the inertial-convective rangeL@1/r @m.
In the isotropic model~1.1!–~1.3!, the odd multipoint cor-

relation functions of the scalar field vanish, while the ev
equal-time functions satisfy linear partial differential equ
tions @4–6#. The solution for the pair correlation function i
obtained explicitly; it shows that the structure functionS2
}r 22« is finite atm50 @4#. The higher-order correlators ar
not found explicitly, but their inertial-range behavior can
©2001 The American Physical Society06-1
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extracted from the analysis of the nontrivial zero modes
the corresponding differential operators in the limits«→0
@5,7#, 1/d→0 @6#, or «→2 @7,8#. It was shown that the eve
structure functions in the inertial-convective range exh
anomalous scaling behavior,

Sn~r !}D0
2n/2r n(12«/2)~mr!Dn, r 5ux2x8u ~1.6!

with negative anomalous exponentsDn , whose first terms of
the expansion in« @5# and 1/d @6# have the forms

Dn52n~n22!«/2~d12!1O~«2!52n~n22!«/2d

1O~1/d2!. ~1.7!

Another quantity of interest is the local dissipation rate
scalar fluctuations,E(x)5n0] iu(x)] iu(x). The equal-time
correlation functions of its powers in the inertial range ha
the forms@5,6#,

^En~x!Ep~x8!&}~Lr !2D2n2D2p~mr!D2n12p ~1.8!

with L from Eq. ~1.4! and Dn from Eq. ~1.6!. Relations of
the form~1.8! are characteristic of the models with multifra
tal behavior@9#.

In Ref. @10# and subsequent papers@11–15#, the field
theoretic renormalization group~RG! and operator produc
expansion~OPE! were applied to model~1.1!–~1.3!. In the
RG approach, the anomalous scaling for the structure fu
tions and various pair correlators is established as a co
quence of the existence of ‘‘dargerous’’ composite opera
in the corresponding operator product expansions wh
negativecritical dimensions are identified with the anom
lous exponentsDn . This allows one to construct a systema
perturbation expansion for the anomalous exponents, an
gous to the well-known« expansion in the RG theory o
critical behavior.

The key role in the RG and OPE approach to mo
~1.1!–~1.3! is played by the critical dimensionsDnl , associ-
ated with the irreducible tensor composite operators

Fnl5Pir@] i 1
u•••] i l

u~] iu ] iu!p#, ~1.9!

where l is the number of the free vector indices andn5 l
12p is the total number of the fieldsu entering into the
operator; the vector indices of the symbolFnl are omitted.
The symbolPir denotes the irreducible part, obtained by su
tracting the appropriate expression involving the delta sy
bols, such that the resulting tensor is traceless with respe
any pair of indices. In particular,Pir@] iu ] ju#5] iu ] ju
2d i j (]ku ]ku)/d and so on.

The dimensionDn[Dn0 of the scalar operator is nothin
other than the anomalous exponent in Eq.~1.6!; see Ref.
@10#. The dimensions withlÞ0 come into play if the forcing
~1.2! becomes anisotropic:Dnl corresponds to the leadin
zero-mode contribution to thel th term of the Legendre de
composition for the functionSn ; see Ref.@13#. They can be
systematically calculated as a series in«,
05630
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Dnl
(k)«k ~1.10!

with the first-order coefficient@13#

Dnl
(1)52

n~n22!

2~d12!
1

~d11!l ~d1 l 22!

2~d21!~d12!
. ~1.11!

For l 50 this gives the result of@5#, while for n53 and l
51,3 the results of Refs.@7# are recovered. The result~1.11!
was rederived later in Refs.@16,17#.

The coefficientsDn0
(2) andDn2

(2) were obtained in Ref.@10#
for any n andd; the result for generall is presented in@14#.
In particular, one has

Dnl
(2)5n~n22!~0.000 203n20.029 76!2 l 2~0.017 32n

10.012 23! ~1.12a!

for d52 and

Dnl
(2)5n~n22!~0.002 03n20.003 84!2 l ~ l 11!~0.007 10n

20.006 19! ~1.12b!

for d53 ~analytical results are too cumbersome and will n
be given here; see Refs.@10# for l 50,2 and@14# for general
l ).

TheO(«3) contribution toDnl was presented in Ref.@15#,

Dnl
(3)5n~n22!~0.004 54n210.064 86n10.065 05!1 l 2

~20.019 74n220.104 23n10.240 9410.017 48l 2!

~1.13a!

for d52 and

Dnl
(3)5n~n22!~0.001 40n210.019 92n10.034 37!1 l ~ l 11!

3@20.004 20n220.024 21n10.002 80l ~ l 11!

10.050 65# ~1.13b!

for d53. Here, we have presented theO(«3) results with
improved accuracy in numerical coefficients and correcte
misprint in the expression ford53 in Ref. @15#. No analyti-
cal formula forDnl

(3) is available for generald, but the nu-
merical result of the form~1.13! can be obtained for any
given d. The larged limit is discussed in Sec. VI E.

Besides the calculational efficiency, an important adv
tage of the RG approach is its universality: it can also
applied to the case of finite correlation time or non-Gauss
advecting field; see Ref.@13#. For passively advected vecto
fields, any calculation of the exponents for higher-order c
relations calls for the RG techniques already in theO(«)
approximation@18–20#. Detailed introduction to the RG ap
proach in the statistical theory of turbulence and the biblio
raphy can be found in Refs.@21,22#.
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The main goal of this paper is to give the complete a
detailed derivation of the third-order result~1.13! announced
in Ref. @15#, and to present and explain in detail the cor
sponding calculational technique. It might be useful not o
for the rapid-change model~1.1!–~1.3! and its descendants
but also in a wider context of the statistical models of fu
developed turbulence and critical dynamics.

Another scope of the paper is to discuss the nature
convergence properties of the« expansion. The knowledg
of the three terms allows one to obtain reasonable predict
for finite values of«;1 and to compare them with the ex
isting nonperturbative results: analytical and numerical so
tions of the zero-mode equations@6,7# and numerical simu-
lations @23–25#.

The plan of the paper is as follows. In Sec. II we recall t
field theoretic formulation of the model, diagrammatic tec
nique, renormalization, and RG equations. In Sec. III
briefly discuss the OPE, renormalization of composite ope
tors ~1.9! and their relationship to the issue of anomalo
scaling. Since the ‘‘ideology’’ of the RG and OPE approa
to the model~1.1!–~1.3! is explained in Refs.@10–13# in
detail, here we confine ourselves to only the necessary in
mation. In Sec. IV we present the general scheme of
calculation of the critical dimensions of the operatorsFnl . In
Sec. V, the calculation in the one-loop and two-loop appro
mations is presented in great detail. Section VI is devote
the three-loop calculation; some results for the relev
quantities are given in the Appendix. In Sec. VII we discu
the convergence of the« expansion, the improved inverse«
expansion, and comparison with existing nonperturbative
sults. The main ideas of the paper are briefly reviewed in
Conclusion.

II. FIELD THEORETIC FORMULATION OF THE
MODEL, DIAGRAMMATIC TECHNIQUE,

RENORMALIZATION, AND RG EQUATIONS

The stochastic problem~1.1!–~1.3! is equivalent to the
field theoretic model of the set of three fieldsF[$u,u8,v%
with action functional

S~F!5u8Duu8/21u8@2] t1n0]22~v]!#u2vDv
21v/2.

~2.1!

The first four terms in Eq.~2.1! represent the Martin-Siggia
Rose-type action for the stochastic problem~1.1! and~1.2! at
fixed v, and the last term represents the Gaussian avera
over v. HereDu and Dv are the correlators~1.2! and ~1.3!,
respectively, the required integrations overx5(t,x) and
summations over the vector indices are understood.

The model~2.1! corresponds to a standard Feynman d
grammatic technique with the bare propagatorsvv, u u, u u8
~the lineu8 u8 is absent!. In the diagrams, these propagato
are represented by the lines

~2.2!
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the slashed end of a solid line corresponds to the fieldu8, the
end without a slash corresponds tou. The triple vertex
V(F)52u8v j] ju5] ju8v ju @the equality holds due to the
integration overx in Eq. ~2.1!# is represented as

~2.3!

The dot with the indexj on the solid line denotes the differ
entiation]/]xj with respect to the argumentx of the end of
the line attached to the vertex; the indexj of the derivative is
contracted with the index of the end of the linevv attached
to the vertex. Owing to the transversality of thevv line, the
dot can be moved onto another line, as shown in Eq.~2.3!. In
the momentum representation, the vertex~2.3! corresponds
to the factor2 ikj or, equivalently,1 iqj , wherek andq are
the momenta flowing into the vertex via the fieldsu8 andu,
respectively. The sum of the three momenta flowing into
vertex via the fieldsu,u8,v is equal to zero.

The line vv in the diagrams corresponds to correlati
function ~1.3!, and the linesu u8 and u u in model ~2.1! in
the (v,k) representation correspond to the bare propaga

^u u8&05~2 iv1ek!21, ^u u&05C~k!~v21ek
2!21,

ek[n0k2, ~2.4!

whereC(k) is the Fourier transform of the functionC from
Eq. ~1.2! andv andk ‘‘flow via the line from the left to the
right’’ if the standard form of the Fourier transform wit
respect to the coordinate and time differences is used.

In what follows, we shall work in the (t,k) representation,
where the propagators~2.4! have the forms

^u u8&05Q~ t2t8!exp$2~ t2t8!ek%, ^u u&0

5$C~k!/2ek%exp$2ut2t8uek%; ~2.5!

in ^u u8&0 , t is the time argument ofu andt8 is the argument
of u8.

The model~2.1! is logarithmic@the coupling constantg0
in Eq. ~1.4! is dimensionless# at «50, and the UV diver-
gences have the form of the poles in« in the correlation
functions of the fieldsu, u8. Superficial UV divergences
whose removal requires counterterms, are present only in
1-irreducible function ^u 8u&1-ir , and the corresponding
counterterm reduces to the formu8]2u; see Ref.@10#. Thus
for the complete elimination of the UV divergences it is su
ficient to perform the multiplicative renormalization of th
parametersn0 and g05D0 /n0 with the only independen
renormalization constantZn ,

n05nZn , g05gm«Zg ,

Zg5Zn
21 ~D05g0n05gm«n!. ~2.6!
6-3
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Herem is the renormalization mass in the minimal subtra
tion ~MS! scheme, which we always use in what follows,g
and n are renormalized analogs of the bare parametersg0
andn0, andZ5Z(g,«,d) are the renormalization constant
In the MS scheme they have the form ‘‘11 only poles in«.’’
The last relation in Eq.~2.6! results from the absence o
renormalization of the contribution withDv in Eq. ~2.1!.

The renormalized action is obtained from the function
~2.1! by the substitution~2.6! and has the form

SR~F!5u8Duu8/21u8@2] t1nZn]22~v]!#u2vDv
21v/2,

~2.7!

where the amplitudeD05gm«n from Eq. ~1.3! is expressed
in renormalized parameters using Eqs.~2.6!.

The exact response functionG[^u u8& satisfies the stan
dard Dyson equation, which in thev,k representation ha
the form

G21~v,p!52 iv1n0p22Su8u~v,p!, ~2.8!

where the self-energy operatorSu 8u in the diagrammatic no-
tation ~2.2! and ~2.3! is represented as follows:

~2.9!

The multiloop diagrams, which could be added on t
right-hand side of Eq.~2.9!, contain effectively closed cir-
cuits of retarded propagators^u u8&0 and therefore vanish; i
is crucial here that the correlation function^vv& in Eq. ~1.3!
is proportional to thed function in time. Therefore, the self
energy operator is given by the one-loop approximation
actly; it is independent ofv and has the form

Su 8u~p!52
D0pipj

2~2p!dE dkPi j ~k!Nk

52
D0~d21!p2

2d~2p!d E dkNk[2
D0~d21!p2

2d
U,

~2.10!

where

U[~2p!2dE dkNk5CdE
m

`

dkk212«5Cdm2«/«,

Cd[Sd /~2p!d ~2.11!

with Nk from Eq. ~1.3!. The quantitySd52pd/2/G(d/2) is
the surface area of the unit sphere ind-dimensional space. In
Eq. ~2.10! we have used the standard conventionQ(t2t8)
51/2 at t5t8 for the step function in theu u8 line and the
relation ^Pi j (k)&5d i j (d21)/d for the angular averaging o
the transverse projector ind dimensions.
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From the Dyson equation and Eqs.~2.10! and ~2.11! it
follows that the exact response function^u u8& is obtained
from its bare counterpart^u u8&0 in Eqs.~2.4! and~2.5! sim-
ply by the replacement

n0→ne f f[n01Cd~d21!D0m2«/2d«. ~2.12!

The renormalization constantZn in Eq. ~2.6! can be found
exactly from the requirement that the ‘‘effective diffusivity
ne f f be UV finite in renormalized theory~2.7!, i.e., have no
poles in« when expressed in renormalized variables~2.6!. In
the MS scheme this gives

Zn512u ~d21!/2d«, u[g Cd , Cd5Sd /~2p!d,
~2.13!

where we have changed to the more convenient coup
constantu. In the renormalized variables,ne f f is given by the
expression

ne f f5nH 11
u~d21!@~m/m!«21#

2d« J , ~2.14!

which is obviously finite at«→0.
The basic RG equation for a multiplicatively renormali

able quantityF5ZFFR ~correlation function, composite op
erator, etc.! has the form

@DRG1gF#FR50, DRG5Dm1b]u2gnDn . ~2.15!

Here and below,Dx[x]x for any variablex, and the RG
functions~the b function and the anomalous dimensionsg)
are defined as

b[D̃mu, gF[D̃mln ZF5b]uln ZF for any ZF ,
~2.16!

where D̃m denotes the operationm]m at fixed bare param-
etersg0 , n0. From the definitions, the last relation in Eq
~2.6! and exact expression~2.13!, for the basic RG functions
one obtains

b~u!5u@2«1gn#, gn5u~d21!/2d. ~2.17!

From Eq.~2.17! it follows that the RG equations~2.15! pos-
sess an IR stable positive fixed point,

u* 52d«/~d21!, b~u* !50, b8~u* !5«.0.
~2.18!

This fact implies that correlation functions of model~1.1!–
~1.3! in the IR region (Lr @1, mr;1) exhibit scaling be-
havior; the corresponding critical dimensionsD@F#[DF can
be calculated as a series in«. For the basic fields and quan
tities, including the composite operatorsun, the dimensions
are found exactly@10#,

Dv522«, Dm51, Du5~211«/2!,

D@un#5nDu , Du85d112«/2 ~2.19!
6-4



c-

n

th

ss

n
ha
s

g

fo

-
-

in
q.

of
n

ve

d
ar

s

a
ero

tors
pear

nt

n-
si-

y

the

lar

-
to

ide
nd

ing

er

d
m

r
ng

ial-

rs

a-

CALCULATION OF THE ANOMALOUS EXPONENTS IN . . . PHYSICAL REVIEW E64 056306
~no corrections of order«2 and higher!. This is a conse-
quence of the exact equalitygn(u* )5«, which follows from
Eqs.~2.17! and ~2.18!.

In particular, for the structure functions~1.5!, relations
~2.19! along with dimensionality considerations give

Sn~r !5D0
2n/2r n(12«/2)jn~mr!, ~2.20!

with some nontrivial dependence on the IR scalem contained
in the scaling functionsjn(mr).

III. COMPOSITE OPERATORS, OPERATOR PRODUCT
EXPANSION, AND ANOMALOUS SCALING

Representations of the form~2.20! for any scaling func-
tions j(mr) describe the behavior of the correlation fun
tions for Lr @1 and any fixed value ofmr. The inertial
range corresponds to the additional conditionmr!1. The
form of the functionsj(mr) at mr→0 is studied using the
OPE.

According to the OPE, the behavior of the quantities e
tering into the right-hand side of Eq.~1.5! for r5x2x8→0
and fixedx1x8 is given by the infinite sum

@u~ t,x!2u~ t,x8!#n5(
F

CF~r !FS t,
x1x8

2 D , ~3.1!

whereCF are coefficients regular inm2 and F are all pos-
sible renormalized local composite operators allowed by
symmetry~more precisely, see below!.

In what follows, it is assumed that the expansion~3.1! is
made in irreducible tensors~scalars, vectors, and tracele
tensors!; the possible tensor indices of the operatorsF are
contracted with the corresponding indices of the coefficie
CF . With no loss of generality, it can also be assumed t
the expansion is made in ‘‘scaling’’ operators, i.e., tho
having definite critical dimensionsDF .

The structure functions~1.5! are obtained by averagin
Eq. ~3.1! with the weight expSR , the mean valueŝF& ap-
pear on the right-hand side. Their asymptotic behavior
m→0 is found from the corresponding RG equations~2.15!
and has the form̂F&}mDF.

From the RG representation~2.20! and the operator prod
uct expansion~3.1! we therefore find the following expres
sion for the structure functions in the inertial range (Lr
@1, mr!1):

Sn~r !5D0
2n/2r n(12«/2)(

F
AF~mr !~mr!DF, ~3.2!

with coefficientsAF regular inm2.
Some general remarks are now in order.
Owing to translational invariance, the operators hav

the form of total derivatives give no contribution to E
~3.2!: ^]F(x)&5]^F(x)&5]3const50.

In model~1.1!–~1.3!, the operators with an odd number
fieldsu also have vanishing mean values; their contributio
vanish along with the odd structure functions themsel
05630
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~they will be ‘‘activated’’ in the presence of a nonzero mixe
correlation function̂ vf & or an imposed gradient of the scal
field!.

If the functionC in Eq. ~1.2! depends only onr 5ur u, the
model becomes SO(d) covariant and only the contribution
of scalar operators enter into Eq.~3.2!. Indeed, in the isotro-
pic case the tensor indices of the mean values^F& of the
operatorsF in Eq. ~3.1! can only be those of Kronecker delt
symbols. It is impossible, however, to construct a nonz
irreducible~traceless! tensor solely of the delta symbols.

In the presence of anisotropy, irreducible tensor opera
acquire nonzero mean values and their contributions ap
on the right-hand side of Eq.~3.2!. In the simplest case of the
uniaxial anisotropy, specified by a unit vectorn in the cor-
relation function~1.2!, the mean value of al th rank traceless
operator is necessarily proportional to thel th rank symmetri-
cal traceless tensor built of the vectorn along with the delta
symbols; its contraction with the corresponding coefficie
AF gives rise to thel th-order Legendre polynomialPl(z)
with z5(r•n)/r . In general, the expansion in irreducible te
sors in Eq.~3.1! after the averaging leads to the decompo
tion in the irreducible representations of SO(d), the l th sec-
tor corresponds to the contribution of thel th rank composite
operators.

The leading term in thel th anisotropic sector is given b
the l th rank tensor operator with minimal dimensionD@F#.
The feature typical to the models describing turbulence is
existence of composite operators withnegativecritical di-
mensions; their contributions in the OPE lead to singu
behavior of the scaling functions atmr→0, that is, to the
anomalous scaling. The operators with minimalDF are those
involving the maximal possible number of fieldsu and the
minimal possible number of derivatives~at least for small«).
Both the problem~1.1!–~1.3! and the quantities~1.5! possess
the symmetryu→u1const. It then follows that the expan
sion ~3.1! involves only operators invariant with respect
this shift and therefore built of thegradientsof u.

In general the operators entering into the right-hand s
of Eq. ~3.1! are those that appear in the Taylor expansion a
those that admix to them in renormalization. The lead
term of the Taylor expansion forSn is thenth rank operator,
which can symbolically be written as (]u)n; its decomposi-
tion in irreducible tensors gives rise to operators of low
ranks. In the presence of the noise~1.2!, operators of the
form (]u)k with k,n admix to them in renormalization an
also appear in the OPE. Owing to the linearity of proble
~1.1!, operators withk.n ~whose contributions would be
more important! do not admix to the terms of the Taylo
expansion forSn and do not appear in the correspondi
OPE.

We thus conclude that the leading terms of the inert
range behavior are related to the critical dimensionsDnl of
the infinite family of irreducible tensor composite operato
Fnl introduced in Eq.~1.9!.

In general, operators~1.9! mix in renormalization. One
can show that the corresponding infinite renormalization m
trix
6-5
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FIG. 1. Diagrammatic repre-
sentation of the functionG in the
three-loop approximation.
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Fnl5(
n8 l 8

Znl,n8 l 8Fn8 l 8
R ~3.3!

is in fact block triangular, i.e.,Znl,n8 l 850 for n8.n, and so
are the matrix of anomalous dimensionsg(u)5Z21D̃mZ and
the matrix of critical dimensionsD5n1nDu1g(u* ). It is
then obvious that the dimensionsDnl , given by the eigen-
values of the latter matrix, are completely determined by
finite subblocks withn85n. Therefore, we can neglect a
the elements of the matrix~3.3! other thanZnl,nl8 . The latter
are determined by the 1-irreducible correlation functio
with one operatorFnl andn fields u. The diagrams for such
functions do not involve the propagator^u u&0 from Eq.~2.4!
and can therefore be calculated directly in the ‘‘unforce
model without the noise~1.2!, that is, without the first terms
in the action functionals~2.1! and~2.7!. In the absence of the
forcing, the model becomes SO(d) covariant, the irreducible
operators with different values ofl cannot mix in renormal-
ization, so that the blocksZnl,nl8 appear diagonal.

We thus conclude that the critical dimensionsDnl are de-
termined by the diagonal elementsZnl[Znl,nl of the matrix
~3.3!,

Dnl5n1nDu1gnl~u* !5n«/21gnl~u* !, gnl~u!

5D̃mln Znl5b]uln Znl ~3.4!

with b from Eq.~2.16!, u* from Eq.~2.18!, andDu from Eq.
~2.19!. Owing to the renormalization, the critical dimensio
Dnl is not equal to the simple sum of critical dimensio
Du5(211«/2), D]51 of the fields and derivatives const
tuting Fnl . The elementsZnl can be calculated in the mode
without forcing, in which the operators~1.9! are renormal-
ized multiplicatively:Fnl5ZnlFnl

R .
05630
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IV. CALCULATION OF THE CRITICAL DIMENSIONS OF
OPERATORS F nl : GENERAL SCHEME

From now on, we shall consider composite operators~1.9!
in the model without the noise, that is, withDu50 in the
action functional~2.1!. They are renormalized multiplica
tively, Fnl5ZnlFnl

R , and the renormalization constantsZnl

5Znl(g,«,d) are determined by the requirement that t
1-irreducible correlation function

^Fnl
R ~x!u~x1!•••u~xn!&1-ir5Znl

21^Fnl~x!u~x1!•••u~xn!&1-ir

[Znl
21Gnl~x;x1 , . . . ,xn! ~4.1!

be UV finite in renormalized theory~2.7!, i.e., have no poles
in « when expressed in renormalized variables~2.6!. This is
equivalent to the UV finiteness of the productZnl

21Gnl(x;u),
in which

Gnl~x;u!5
1

n! E dx1•••E dxnGnl~x;x1 , . . . ,xn!

3u~x1!•••u~xn! ~4.2!

is a functional of the fieldu(x). In the zeroth approximation
the functional~4.2! coincides with the operatorFnl(x), and
in higher orders the kernelGnl(x;x1 , . . . ,xn) is given by the
sum of diagrams shown in Fig. 1. The analysis of the d
grams shows that for any argumentxs , the corresponding
spatial derivative is isolated as an external factor from e
diagram. Using the integration by parts, these derivatives
be moved onto the corresponding fieldsu(xs) in Eq. ~4.2!, so
that the quantity~4.2! can be represented as a functional
the vector fieldwi[] iu,
6-6
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Gnl~x;u!5
1

n! E dx1•••E dxnG̃nl
i 1••• i n~x;x1 , . . . ,xn!

3wi 1
~x1!•••wi n

~xn!. ~4.3!

The diagrams that determine the kernelG̃ in Eq. ~4.3!
contain only logarithmic UV divergencies. Therefore, in o
der to find the constantZnl

21 it is sufficient to calculate the

functionalG̃ with some special choice of its functional arg
mentwi , namely, one can replace it by its value at the fix
point x, the argument of the operatorFnl in Eqs.~4.1!. Now
the productwi 1

(x)•••wi n
(x) can be taken outside the inte

grals overx1 , . . . ,xn in Eq. ~4.3!, so that the functiona
Gnl(x;u) turns to a local composite operator. The integrat
of the remaining functionG̃nl over x1 , . . . ,xn gives a quan-
tity independent of any coordinate variables, and its vec
indices can only be those of Kronecker delta symbols. Th
contraction with the indices of the produ
wi 1

(x)•••wi n
(x) gives rise to the original operatorFnl(x)

with some scalar coefficientḠ. The integration over
x1 , . . . ,xn means that in the Fourier representation, the c
responding correlation function is calculated with all its m
menta set equal to zero, which is always implied in wh
follows.

Now we turn to the derivation of practical formulas fo
the calculation of the constantsZnl

21 from the diagrams. For
the sake of brevity, we introduce the notation,

Znl[ZF , Fnl~x![F, Gnl~x;u![G5FḠ. ~4.4!

Then the UV finiteness of the quantityZnl
21Gnl(x;u) is ex-

pressed by the relation

Pdiv@ZF
21G#50, ~4.5!

where Pdiv is the operation that selects the UV diverge
part; in the MS scheme, it selects only poles in«. Classifying
the contributions in model~2.7! according to the powers o
the renormalized coupling constantu from Eq. ~2.13! gives

ZF
21511 (

k51

`

@ZF
21#k , G5 (

k50

`

Gk5F1F (
k51

`

Ḡk ,

~4.6!

where@ZF
21#k , Gk , andḠk are the contributions of orderuk

in the respective quantities. We substitute expressions~4.6!
into Eq. ~4.5! and omit the overall factorF; this gives

PdivFZF
211ZF

21(
k51

`

ḠkG50. ~4.7!

We recall that in the MS scheme one has ‘‘ZF
21511 only

poles in «,’’ so that Pdiv$ZF
21%5ZF

2121. Substituting this
equality into Eq.~4.7! gives the relation
05630
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ZF
21512PdivFZF

21(
k51

`

ḠkG , ~4.8!

which allows for the recurrent calculation of the contrib
tions @ZF

21#k in the expansion~4.6! from the quantitiesḠk .
Indeed, selecting in Eq.~4.8! terms of the same order inu
gives

@ZF
21#152Pdiv$Ḡ1%, ~4.9a!

@ZF
21#252Pdiv$Ḡ21@ZF

21#1Ḡ1%, ~4.9b!

@ZF
21#352Pdiv$Ḡ31@ZF

21#1Ḡ21@ZF
21#2Ḡ1%, ~4.9c!

and so on. The relations given in Eq.~4.9! are sufficient for
the three-loop calculation.

In Fig. 1, we present, along with respective symme
coefficients, all the diagrams needed for the three-loop
culation of the functionG, except for those with the self
energy insertions of the form~2.9! in the u u8 lines. ~The
symmetry coefficients that are not shown are equal to uni!
The index l in G ( l ) denotes the number of loops~that is,
independent integration momenta!: l 51,2,3. Below each
diagram we give its number, which will always be used
the following to refer to a diagram. The numbers have
forms ‘‘No. XY,’’ where X is the number of ‘‘rays’’ in the
diagram andY is the order number~from the left to the right
in Fig. 1! of the diagram in the subset with givenX.

The thick dots in the diagrams correspond to the verti
of the composite operatorF ~more precisely, see below!, all
the horizontal dashed lines correspond to correlation fu
tions ^vv& from Eq. ~1.3! with D05gnm«, and the rays cor-
respond to chains of lineŝu u8&0^u u8&0••• in the same
order on each ray: the upper end of each line correspond
the field u and the lower end corresponds tou8. For this
reason, in contrast with Eq.~2.9!, in Fig. 1 we do not add
slashes at the ends of the lines. If desired, they can easil
restored: a slash should be added in the lower end of e
line belonging to a ray. The lowest ‘‘external lines’’ of th
diagrams in Fig. 1 correspond to the factorsu ~and not to the
propagators!. We also note that the diagrams in Fig. 1 do n
involve theu u lines ~even in the presence of the noise!.

In Fig. 1, we omitted the diagrams that are topologica
possible and would be needed for the general correla
function ~1.3!, but in our model with the delta function in
time in Eq. ~1.3! they vanish due to the presence of t
closed circuits of retarded propagators^u u8&0; cf. the re-
mark in Sec. II below Eq.~2.9!.

The contributions of the diagrams with the self-ener
insertions~2.9! will automatically be included if the propa
gators^u u8&0 in Fig. 1 are taken to be exact, that is, wi
ek5ne f fk

2 in Eqs.~2.4! and ~2.5!. In the renormalized vari-
ables,ne f f is given by Eq.~2.14!, the zero-order approxima
tion beingne f f5n. It is easy to see that the parametern from
ek5nk2 enters into the final answers for the diagrams
n2 l , wherel is the number of loops in the diagram. It is thu
6-7
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sufficient to calculate the diagrams without the self-ene
insertions and withek5nk2 and then introduce the add
tional factor

~ne f f /n!2 l5@11Q#2 l , Q5
u~d21!@~m/m!«21#

2d«
~4.10!

for any l-loop diagram; see Eq.~2.14!. We stress that the
replacementn→ne f f is not needed in the amplitudeD0
5gnm« of the correlation function~1.3!.

Expression~2.14! corresponds to the special choice of t
function Nk in Eq. ~1.3!. If the specific form of the IR regu-
larization is different@for example, the functionNk5(k2

1m2)2d/22«/2 was used in Refs.@5,10##, the relation~2.10!
for Su 8u remains valid, but the explicit form of the integra
U in Eq. ~2.11! changes. Then the quantityQ in Eq. ~4.10! is
given by the following general relation:

Q52@Su8u2PdivSu8u#/np2, ~4.11!

which recovers the expression~4.10! for Nk from Eq. ~1.3!.
Introduction of the additional factors~4.10! to the dia-

grams ofG ( l ) in Fig. 1 with D05gnm« in Eq. ~1.3! and ek

5nk2 in Eq. ~2.5! for the quantitiesḠn in Eq. ~4.9! gives

Ḡ15Ḡ (1), Ḡ25Ḡ (2)2Q Ḡ (1),

Ḡ35Ḡ (3)22Q Ḡ (2)1Q2Ḡ (1). ~4.12!

Expanding the quantityQ from Eq. ~4.10! in « gives rise to
contributions with the logarithms ln(m/m); similar contribu-
tions also come from the factors (m/m) l«, which naturally
arise in anyl-loop diagram inG ( l ). It is well known that the
renormalization constants in the MS scheme are indepen
of any mass parameters, likem and m in the case at hand
This means that, after the substitution of relations~4.12! into
Eqs.~4.9!, all contributions with ln(m/m) in ZF

21 will cancel
each other. Such cancellation provides a good possibilit
control the absence of calculational errors. In the two-lo
calculation@10# we have checked the cancellation of the co
tributions«21ln(m/m) in @ZF

21#2. There, the functionNk was
taken in the form different from Eq.~1.3! ~see above!, the«
expansion of the corresponding quantityQ in Eq. ~4.11! con-
tained constant terms along with powers of the logarith
ln(m/m), so that it was necessary to take into account
contribution withQ in expression~4.12! for Ḡ2.

Our present choice forNk in Eq. ~1.3! is much more con-
venient, because the corresponding integral~2.11! contains
only poles in«, and the« expansion of the correspondin
quantity Q in Eq. ~4.10! contains only powers of ln(m/m)
with no constant contributions. Since we know in advan
that all contributions with ln(m/m) in ZF

21 will cancel each
other, we may simply setm5m in the calculation of this
quantity. Then all the contributions with ln(m/m) vanish, in
Eq. ~4.10! we obtainQ50 ~no corrections from the self
energy insertions are needed!, in Eq. ~4.12! we obtain Ḡ l

5Ḡ ( l ), and the factors (m/m) l« in the l-loop diagrams turn to
05630
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unity. In what follows, in the calculations of the diagrams
Ḡ ( l ) we shall retain the factors (m/m) l« and replace them
with unity only in the last step, that is, in the calculation
ZF

21 .
Let us turn to the vertex of the composite operatorF,

denoted in Fig. 1 by thick dots on the top of the diagram
According to the general rules of the universal diagramma
technique~see, e.g., Ref.@26#!, for any composite operato
F(x) built of the fieldsu, the vertex withk>0 attached lines
corresponds to the vertex factor

Vk~x;x1 ,•••,xk![dkF~x!/d u~x1!•••d u~xk!.
~4.13!

The argumentsx1•••xk of the quantity~4.13! are contracted
with the arguments of the upper ends of the linesu u8 at-
tached to the vertex. For our operators~1.9!, built solely of
the gradientswi(x)5]u(x)/]xi at a single spacetime pointx,
the factors~4.13! contain the product] i 1

d(x2x1)•••] i k
d(x

2xk), and the integrations overx1•••xk are easily per-
formed: the derivatives move onto the upper ends of
corresponding linesu u8 attached to the vertex~such deriva-
tives we denote by dots on the lines!, and their arguments
x1•••xk are substituted withx. After the derivatives have
been moved inside the diagram, the remaining vertex fa
for the operatorF(x) can be understood as a usual deriv
tive,

Vi 1••• i k
~x!5]kF~x!/]wi 1

~x!•••]wi k
~x!. ~4.14!

In what follows, in order to simplify the notation we sha
omit the argumentx and use the numerical indices 1, . . . ,k
instead ofi 1••• i k . Then the vertex factor~4.14! for a k-ray
diagram takes on the form

V12•••5]1]2•••F with ] i[]/]wi . ~4.15!

Diagrams Nos. 41, 46, 51, 61 in Fig. 1 are ‘‘factorizable
in the sense that they can be reduced to the product
blocks with a lesser number of rays. All the other diagra
in Fig. 1 will be termed ‘‘normal.’’

A. Scalarization of the diagrams

The contribution of a specific diagram into the function
G in Eq. ~4.3! for any composite operatorF, built of the
gradientswi5] iu, is represented in the form

G5V12•••I 12•••
ab•••wawb•••, ~4.16!

whereV12••• is the vertex factor~4.15!, I 12•••
ab••• is the ‘‘inter-

nal block’’ of the diagram with free indices, the produ
wawb••• corresponds to external lines. The numerical in
ces 1,2, . . .will always be understood asi 1 ,i 2 , . . . , their
number in Eq.~4.16! equals the number of the letter indice
a,b, . . . and is determined by the number of ‘‘rays,’’ that i
the number of lines that attach to the vertex of the opera
These lines are given by products of the propagators^u u8&0
from Eq. ~2.5! with ek5nk2 ~see above! and are connected
6-8
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by the linesvv from Eq. ~1.3!. As an example, we presen
the general form of a four-ray diagramG,

~4.17!

The thick dot on the top represents the vertex of the comp
ite operator, it corresponds to the vertex factorV1234 in Eq.
~4.15!. The dots on the lines denote the differential operat
] i[]/]xi ; their indices are shown explicitly in the diagram
The lower external lines of the diagram correspond to fac
u; the derivatives at the external vertices~2.3!, denoted by
dots with the indicesa,b,c,d, act on these fields and tur
them into the productwawbwcwd with wi[]u/]xi . After all
these differentiations have been performed, all the exte
momenta in the diagrams are set to zero; the IR regular
tion is provided by the parameterm in the function ^vv&
from Eq. ~1.3!.

The diagrams are calculated in the time-momentum r
resentation. The integration momenta are assigned to al
ternal lines; the number of independent momenta is equa
the number ofvv lines. The dots with the numerical indice
1,2, . . . on theupper lines in Eq.~4.17! correspond to the
vector factors6 iks , coming from the vertex of the compos
ite operator. Herek is the integration momentum flowing vi
the line with the index shown near the dot (s51,2,3,4); the
coefficient equals2 i if the momentum ‘‘flows into the dot’’
and 1 i if the momentum ‘‘flows out.’’ In general, simila
factors are also present inside the diagram, that is, inside
shaded block in Eq.~4.17!. Collecting all such factors6 i
from the whole diagram gives a certain ‘‘sign factor’’61,
which, of course, should be taken into account in the ca
lations.

Since the vertex factor~4.15! and the productwawb•••

are symmetrical with respect to any permutations of th
indices, the quantityI 12•••

ab••• in Eq. ~4.16! is automatically
symmetrized with respect to any permutations of the le
indicesa,b, . . . and the numerical indices 1,2, . . . . In what
follows, such symmetrization will always be denoted by t
symbolS.

For any fixed number of raysk, the quantitySI is repre-
sented as a linear combination

SI 5(
i

BiSi ~4.18!

of certain basis tensor structuresSi5(Si)1,2, . . .
ab, . . . with certain

numerical coefficientsBi . The structures for thek-ray dia-
grams withk52,3,4 have the forms~there are two structure
for k52,3 and three structures fork54)

k52, S15S@d1ad2b#, S25S@d12dab#;

k53, S15S@d1ad2bd3c#, S25S@d12dabd3c#;
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k54, S15S@d1ad2bd3cd4d#,

S25S@d12dabd3cd4d#, S35S@d12d34dabdcd#. ~4.19!

This is sufficient for the three-loop calculation, because
diagrams withk55,6 in Fig. 1 factorize into products of th
blocks withk52,3.

The quantities that will be directly calculated from th
diagrams are not the coefficientsBi themselves, but the fol-
lowing scalar quantities related to them:

Ai5tr@~Si !1,2, . . .
ab, . . .SI 12•••

ab•••#5tr@SiSI #. ~4.20!

Here and below, the symbol tr denotes the contraction w
respect to all repeated indices, which will not be shown
plicitly.

It is therefore necessary to express the coefficientsBi in
Eq. ~4.18! in terms of the quantities~4.20!. This is easily
done: substituting Eq.~4.18! into Eq. ~4.20! gives

Ai5(
k

M ikBk ,

where

Mik[tr@SiSk#. ~4.21!

In a compact notation,A5MB ~matrix M acts onto vector
B and gives vectorA). The symmetrical matrixM defined in
Eq. ~4.21! is easily calculated for any given set of structur
of the form ~4.19!; then the corresponding inverse matr
M 21 is found and the desired expressions forB in terms ofA
follow from the relationB5M 21A.

Below we give the explicit expressions for matrix el
mentsMik5Mki for the structures~4.19!,

k52, M115d~d11!/2, M125d, M225d2;

k53, M115d~d11!~d12!/6, M125d~d12!/3,

M225d~d12!2/9;

k54, M115d~d11!~d12!~d13!/24,

M125d~d12!~d13!/12, M135d~d12!/3,

M225d~d12!~d217d116!/72,

M235d~d12!2/9, M335d2~d12!2/9. ~4.22!

It is worth noting that in the calculation of quantities lik
Mik in Eq. ~4.21! or Ai in Eq. ~4.20!, it is sufficient to retain
the symbolS only in one of the cofactors, because the se
ond is symmetrized automatically and can be replaced w
one of its terms, like the expressions in square bracket
Eq. ~4.19!.

Inverting the matricesM in Eq. ~4.22! gives the following
explicit expressions of the coefficientsB in terms ofA:
6-9
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k52, B152a@dA12A2#,

B25a@22A11~d11!A2# with

a[@~d21!d~d12!#21, ~4.23a!

k53, B156a@~d12!A123A2#,

B259a@22A11~d11!A2# with

a[@~d21!d~d12!~d14!#21, ~4.23b!

k54, B1524a@~d12!~d14!A126~d12!A213A3#,

B2572a@22~d12!A11~d213d16!A22~d13!A3#,

B359a@8A128~d13!A21~d13!~d15!A3# with

a[@~d21!d~d11!~d12!~d14!~d16!#21.
~4.23c!

It should be emphasized that the above relations~4.22!
and ~4.23! are independent of the specific choice of a co
posite operator built of the gradientswi5] iu, which only
determines the explicit form of the vertex factor~4.15!.

B. Contractions of basic tensor structures

Consider the procedure of the contraction of the quanti
I 12•••

ab••• in Eq. ~4.16! with external factors: the vertex facto
V12••• of the composite operator and the productwawb•••.
General rules given below are valid for any local monom
F built of the gradientswi5] iu. The operatorF may have
vector indices; as a rule, they will not be shown explicitly

Substituting the decomposition~4.18! into Eq. ~4.16!
gives

G5(
i

BiV12•••~Si !1,2,•••
ab,•••wawb•••5(

i
BiG i ,

~4.24!

whereG i are the contractions of the quantities~4.19! with the
external factors

G i5V12•••~Si !1,2,•••
ab,•••wawb•••. ~4.25!

Consider first the contractions

~Ti !12•••5~Si !1,2,•••
ab,•••wawb••• ~4.26!

of the structuresSi with the external factorsw. For quantities
~4.19!, they are easily calculated,

k52, ~T1!125w1w2 , ~T2!125w2d12;

k53, ~T1!1235w1w2w3 , ~T2!1235w2S @d12w3#;

k54, ~T1!12345w1w2w3w4 ,

~T2!12345w2S @d12w3w4#, ~T3!12345w4S @d12d34#,
~4.27!
05630
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where the symbolS denotes the symmetrization with respe
to thenumericalindices.

From Eqs.~4.25! and ~4.26! one obtains

G i5V12•••~Ti !12••• , ~4.28!

where the symbolS in the quantities~4.27! can be omitted
owing to the fact that the verticesV12••• are symmetrical.

For a generalk-ray diagram we need to calculate contra
tions of the vertex factorsV1•••k with the structuresT1•••k of
the form ~4.27!. Their basis is provided by the set

w1•••wk , w2d12w3•••wk ,

w4d12d34w5•••wk , and so on. ~4.29!

Consider first the contraction of the vertex factor~4.15!
with the first monomial in Eq.~4.29!, that is, the expression
LkF with the operator

Lk[w1•••wk]1•••]k , ] i[]/]wi . ~4.30!

The key role in the calculation of the quantityLk F is played
by the following consideration: by permutations of the fa
tors w and]/]w, the operatorLk in Eq. ~4.30! can be repre-
sented in the form of a polynomial in the operationD
[wi]/]wi . The action of the latter onto any monomialF is
easily found, namely,DF5nF, wheren is the total number
of the fieldsw in the monomialF. By permutations of the
factorsw and]/]w, one can easily obtain the recurrent rel
tion Lk115Lk(D2k) for the operatorLk , which along with
the relationL15D gives

Lk5D~D21!~D22!•••~D2k11!, D[wi]/]wi .
~4.31!

When this operation acts ontoF, each symbolD is replaced
with the numbern, which gives the desired coefficient

LkF5n~n21!~n22!•••~n2k11!F, ~4.32!

wheren is the total number of the factorsw in the operatorF.
Consider now the contraction of the vertex factor~4.15!

with the second structure in Eq.~4.29!. The latter includes
the factord12, which after the contraction with]1]2 gives
the Laplace operator]2[] i] i with ] i[]/]wi . This operator
commutes with the other derivatives] i and acts directly onto
F. Therefore the first task is the calculation of the quant
]2F, which is easily done for any specific monomialF built
of the gradientswi5] iu.

From now on, we shall confine ourselves with the fam
of operatorsFnl from Eq. ~1.9!, which in the new notation
take on the form

Fnl5Pir@w1•••wlw
2p#, n5 l 12p. ~4.33!

The quantities]2F for such operators are easily calculate

]2Fnl5lnlFn22,l , lnl5~n2 l !~d1n1 l 22!.
~4.34!
6-10
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FIG. 2. Diagrams of the func-
tion G in the one-loop and two-
loop approximations in the de
tailed notation.
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It is worth noting that in the calculation of the quantity]2F,
there is no need to take into account contributions in wh
both derivatives act onto the monomialw1•••wl in Eq.
~4.33!: in this case, two factorsw are necessarily replace
with the symbold is ~the number of free indices is preserve
and the number of factorsw is reduced by two under th
action of]2), and any contribution withd is disappears unde
the action of the operationPir in Eq. ~4.33!.

It is clear that the combination of the relations~4.32! and
~4.34! gives a complete solution to the problem of the calc
lation of the contractions of vertex factor~4.15! with basis
structures of the form~4.29! for our specific operators~4.33!,
and that the above considerations can be directly genera
to the case of any operatorF polynomial in w. If the basis
structure includes several delta symbols@e.g., two delta sym-
bols in the third monomial in Eq.~4.29!#, the operation]2

should be applied repeatedly; one should also remember
each next Laplacian acts onto the operator that has alre
been modified@replacementn→n22 in Eq. ~4.34!#. After
all the operations]2 have been applied, only the operatio
Lk , Eq. ~4.30!, with the reduced number of factors remain
it acts onto the properly modified operatorF according to the
rule ~4.32!. For our operatorsFnl , additional scalar factors
w2, w4, . . . in monomials~4.29! restore the original scala
factor w2p in Eq. ~4.33!. Therefore, all the quantitiesG i in
Eq. ~4.28! are proportional to the original operator~4.33!:
G i5kiF with some numerical coefficientski . They are eas-
ily found using the rules discussed above. In particular,
the two-ray diagramsG15V12w1w25L2F5n(n21)F, G2
5V12w

2d125w2]2F5lnlF, and similarly for the three-ray
and four-ray diagrams.

Substituting the relationG i5kiF into Eq. ~4.24! gives

G5FḠ, Ḡ5(
i

kiBi , ~4.35!

whereki are the coefficients in front ofF in the contractions
of the vertex factorV1•••k with structures~4.29!, numbered
in the same order (k1 corresponds to the structure witho
delta symbols,k2 corresponds to the structure with one de
symbol, and so on!,

k52, k15n~n21!, k25lnl ,

where

lnl5~n2 l !~d1n1 l 22!; ~4.36a!

k53, k15n~n21!~n22!, k25~n22!lnl ;
~4.36b!
05630
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k54, k15n~n21!~n22!~n23!,

k25~n22!~n23!lnl , k35ln22,llnl ; ~4.36c!

k55, k15n~n21!~n22!~n23!~n24!,

k25~n22!~n23!~n24!lnl , k35~n24!ln22,llnl ;
~4.36d!

k56, k15n~n21!~n22!~n23!~n24!~n25!,

k25~n22!~n23!~n24!~n25!lnl ,

k35~n24!~n25!ln22,llnl , k45ln24,lln22,llnl .
~4.36e!

The coefficientski with k55 and 6 will be needed only fo
the calculation of the factorizable diagrams Nos. 51, 61 w
five and six rays, repectively.

The quantitiesAi are calculated directly from the dia
grams, then one calculates the quantitiesBi using the rela-
tions ~4.23!, and then, finally, one calculates the desired co
tribution of the diagramG using the relations~4.35! and
~4.36!.

C. Calculation of the quantities Ai

The quantitiesI 12•••
ab••• for the diagramsG are calculated at

zero external momenta; the independent integration m
menta will always be denoted byk in the one-loop diagrams
k, q in all two-loop diagrams, andk, q, l in all three-loop
diagrams. They are always assigned to the horizontal li
vv; in the normal~not factorizable! diagrams the order is the
following: k flows via the uppermost line,q flows via the
next line, andl flows via the lowest line.

These rules are illustrated by Fig. 2, where the one-lo
and two-loop diagrams are presented with all their mome
the directions of the latter are shown by arrows. We den
all the propagators by solid lines because the horizontalvv
lines cannot be confused with the ‘‘rays’’ built of theu u8
lines. The letter indicesa,b, . . . of thevv lines are always
free ~they will be contracted with the indices of the extern
factors wawb•••), while the numerical indices of thevv
lines are always contracted with the indices of derivativ
~that is, the momentum factors6 ips), shown by dots on the
u u8 lines.

We shall calculate the diagrams in the time-moment
(t,k) representation. First, the elementary integrations o
all times are performed. This gives a certain ‘‘energy d
nominator’’ fE , that is, the factorfE

21 in the integrand. The
remaining integrations are those overd-dimensional mo-
6-11
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menta (k in one-loop diagrams,k, q in two-loop diagrams,
and k, q, l in three-loop diagrams!. Each integration is ac
companied by the factorD0(2p)2d with D05gnm«, and all
n ’s will later be canceled out with analogous factors in t
energy denominators. As a result, the quantityI 12•••

ab••• from
Eq. ~4.16! is represented as follows:

1 loop, I 12•••
ab•••5@D0~2p!2d#E dkNkf12•••

ab••• ,

~4.37a!

2 loops, I 12•••
ab•••5@D0~2p!2d#2E E dkdqNkNqf12•••

ab••• ,

~4.37b!

3 loops, I 12•••
ab•••5@D0~2p!2d#3

3E E E dkdqdlNkNqNlf12•••
ab••• ,

~4.37c!

with Nk from Eq. ~1.3!. After these scalar factors have be
isolated, only the transverse projectorsP remain in thevv
lines. The nontrivial partsf12•••

ab••• of the integrands in Eq
~4.37! are represented as follows:

f12•••
ab•••5CfE

21fsĪ 12•••
ab••• , ~4.38!

whereC is a numerical factor,fE is the energy denominator
fs is an additional ‘‘scalar factor,’’ which can arise due
contractions over the internal indices, andĪ 12•••

ab••• is the non-
trivial ‘‘index structure’’ of the integrand, which remain
after fs has been isolated.

Let us explain in more detail the calculation of the facto
entering into Eq.~4.38! starting with the energy factorsfE

21 .
Since the velocity correlation function~1.3! contains the
delta function in time, the dots on the rays connected by s
correlators have coincident timest. If we assign the timet
50 to the uppermost vertex of a diagram~that is, to the
vertex of the composite operator!, the independent variable
will be the timest i,0 of the horizontalvv lines. On any of
the rays, the timest i decrease from above to below owing
the retardation property of the functions^u u8&0 in Eq. ~2.5!.
For the normal~not factorizable! one-loop and two-loop dia
grams in Fig. 1, the order of the timest i,0 is determined by
the form of the diagram in a unique way, that is, there is o
one ‘‘temporal version.’’ This is also true for all the thre
loop diagrams with two and three rays. However, for two
the three-loop diagrams~Nos. 43, 44 in Fig. 1! there are two
equivalent temporal versions~the exchanget2↔t3 in dia-
gram No. 43 andt1↔t2 in diagram No. 44!. This gives the
additional factor 2 in the coefficientC in Eq. ~4.38! for these
two diagrams.

The energy denominatorfE , obtained as the result of th
integrations over all time variables, is given by the prod
of the factors corresponding to the ‘‘temporal cross s
tions’’ of the diagrams between the horizontalvv lines; to
each cross section corresponds the sum of ‘‘energies’ep
5np2 for all intersectedu u8 lines. For example, one ha
05630
h

y

f

t
-

fE52ek for diagram No. 21 in Fig. 2,fE52eq2ek1q for
diagram No. 22, andfE52eq@ek1eq1ek1q# for diagram
No. 31.

The scalar factorsfs in Eq. ~4.38! are generated by the
vv lines whose vector indices are contracted with the indi
of two integration momenta in the diagram. This gives rise
expressions of the form (pPp8)[pi Pi j pj8 , whereP is the
projector that corresponds to thevv line andp, p8 are the
momenta contracted to the line~the factors6 i are not in-
cluded!. In what follows, we denote asPk , Pq , andPl the
transverse projectors for the momentak, q, and l, respec-
tively. Then the scalar factors from the diagrams in Fig
take on the formfs5(qPkq) for No. 22 andfs51 for Nos.
21, 31, because the latter two diagrams do not contain l
vv contracted to two momenta.

The numerical coefficientC in Eq. ~4.38! is represented as
the productC5C1C2C3, whereC1 is the symmetry coeffi-
cient of the diagram, shown in Fig. 1,C2561 is the sign
factor ~see Sec. IV A! andC351 or 2 is the number of the
temporal versions. For most of the diagrams one hasC25
11, but there are two diagrams withC2521 ~Nos. 44, 45!.
The factorC3 is equal to 1 except for the diagrams Nos. 4
44 with C352. In what follows, we shall always present th
coefficient C as the productC5C1C2C3, for example,C
51/23131 for diagrams Nos. 21, 22 in Fig. 2 andC51
3131 for diagram No. 31.

Now let us turn to the quantitiesĪ 12•••
ab••• in Eq. ~4.38!,

which remain in the integrands after the scalar factorsfs
have been isolated. They have the same stucture for al
diagrams with two and three rays and any number of loo
and two possible structures for the four-ray diagram
namely,

k52, n15 Ī 12
ab5x1x2Pab ;

k53, n25 Ī 123
abc5x1~x1y!2y3aaPbc ;

k54, n35 Ī 1234
abcd5x1y2z3~x1y1z!4aabbPcd ;

k54, n45 Ī 1234
abcd5x1y2z3~x1y1z!4PabPcd8 . ~4.39!

We have introduced the numbering n1–n4 and in what
lows, when describing the diagrams we shall only give
number of the corresponding structure, e.g.,Ī 5n1 with the
specification of the vectorsx,y,z,a,b and projectorsP,P8.
In particular, we haveĪ 5n1 with x5k, P5Pk for diagram
No. 21 in Fig. 2, Ī 5n1 with x5k1q, P5Pq for diagram
No. 22, andĪ 5n2 with x5k, y5q, a5Pkq, P5Pq for
diagram No. 31~quantities likea5Pkq are undestood as
vectors obtained by the action of the matrixPk onto thevec-
tor q).

Our aim is the calculation of the quantitiesAi in Eq.
~4.20! for each diagram in Fig. 1. They are given by th
contractions of the integrals~4.37! with the structuresSi
from Eq. ~4.19!, which leads to the replacement of the fa
tors f12•••

ab••• in Eq. ~4.37! with the quantities f i
6-12
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5tr@(Si)1,2, . . .
ab, . . .Sf12•••

ab•••#. Substituting expression~4.38! into

this construction givesf i5CfE
21fsĀi , where

Āi5tr@SiSĪ # ~4.40!

are the analogs of quantities~4.20! with the replacementI
→ Ī . As a result, from the relations~4.20!, ~4.37!, ~4.38!, and
~4.40! one obtains the following explicit formulas for th
calculation of the coefficientsAi :

1 loop, Ai5@D0~2p!2d#E dkNkC fE
21fsĀi ,

~4.41a!

2 loops, Ai5@D0~2p!2d#2E E dkdqNkNqC fE
21fsĀi ,

~4.41b!

3 loops, Ai5@D0~2p!2d#3

3E E E dkdqdlNkNqNlC fE
21fsĀi

~4.41c!

with Āi from Eq. ~4.40!.
Calculation of these quantities for structures n1 and

from Eq. ~4.39! andSi from Eq. ~4.19! gives,

k52~ Ī 5n1!, Ā15~xPx!, Ā25~d21!x2; ~4.42!

k53~ Ī 5n2!, 3Ā15~y•a!~xPx!1~x•a!~yPy!

1@~x1y!•a#~xPy!,

9Ā25@x212~x•y!#@~d21!~y•a!12~yPa!#

1@y212~x•y!#@~d21!~x•a!12~xPa!#.

~4.43!

Analogous expressions can also be obtained for the st
tures n3 and n4 in Eq.~4.39! for the four-ray diagrams; they
are rather cumbersome are will be given later in Sec. VI

V. CALCULATION IN THE ONE-LOOP AND TWO-LOOP
APPROXIMATIONS

In the one-loop approximation, we need only diagram N
21 , and in the two-loop approximation, all the four diagra
from Fig. 2 are needed. Using the general rules discusse
the previous section, for the normal diagrams in the nota
~4.38!, ~4.39! we obtain

diagram No. 21, C51/23131, fs51, fE52ek ,

Ī 5n1 with x5k, P5Pk @Px50#; ~5.1!

diagram No. 22, C51/23131, fs5~qPkq!,

fE54eqek1q ,
05630
2
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Ī 5n1 with x5k1q, P5Pq ; ~5.2!

diagram No. 31, C513131, fs51,

fE52eq~ek1eq1ek1q!,

Ī 5n2 with x5k, y5q, a5Pkq, P5Pq @~x•a!50,

Py50]; ~5.3!

in the square brackets we give simple relations specific o
given set of momenta and projectors, which are useful in
calculations. We also recall thatep5np2.

Substituting the explicit expressions~5.1!–~5.3! into the
general relations~4.42! and ~4.43! gives

diagram No. 21, Ā150, Ā25~d21!k2; ~5.4!

diagram No. 22, Ā15~kPqk!, Ā25~d21!~k1q!2;
~5.5!

diagram No. 31, 3Ā15~qPkq!~kPqk!,

9Ā25~d21!~qPkq!@k212~k•q!#12~kPqPkq!@q2

12~k•q!#. ~5.6!

A. One-loop approximation

The one-loop approximationḠ (1) in Eq. ~4.6! is deter-
mined by only diagram No. 21 in Fig. 2. Substituting th
quantities known from Eqs.~5.1! and ~5.4! and the relation
ek5nk2 into Eq. ~4.41a! gives ~we recall that the symmetry
coefficient 1/2 is included intoC):

diagram No. 21, A150, A25@~d21!/4#gm«U ~5.7!

with the integralU[(2p)2d*dkNk from Eq.~2.11!. Substi-
tuting that expression into Eq.~5.7! gives

diagram No. 21, A150, A25u@~d21!/4«#~m/m!«,

u5gCd ~5.8!

with coefficientCd from Eq. ~2.11!
From the relations~4.23a! and ~5.8! we find B15

22aA2 , B25a(d11)A2 with a from Eq. ~4.23a! and A2
from Eq. ~5.8!; then from Eqs.~4.35! and ~4.36a! we obtain
the quantity Ḡ for diagram: Ḡ(diagram No. 21)5aA2

@22n(n21)1(d11)lnl#. Substituting the known expres
sions fora andA2 gives

Ḡ (1)5Ḡ~diagram No. 21!

5u~m/m!«
~d11!lnl22n~n21!

4«d~d12!
. ~5.9!

Then the relation~4.9a! gives the final result for theO(u)
contribution to the renormalization constant,
6-13
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ZF
21511@ZF

21#1 , @ZF
21#15u

2n~n21!2~d11!lnl

4«d~d12!
.

~5.10!

B. Two-loop approximation

Consider now the two-loop diagrams Nos. 22, 31 in F
2; the corresponding coefficientsĀi are known from Eqs.
~5.5! and ~5.6!. They include the quantities (kPqk)
5k2sin2q, (qPkq)5q2sin2q, (kPqPkq)52(k•q)sin2q, (k
•q)25k2q2cos2q, whereq is the angle between the vecto
k and q. Substituting these expressions into Eqs.~5.5! and
~5.6! gives

diagram No. 22, Ā15k2sin2q, Ā25~d21!~k1q!2;
~5.11!

diagram No. 31, 3Ā15k2q2sin4q,

9Ā25sin2q$~d21!q2@k212~k•q!#22~k•q!

3@q212~k•q!#%

5q2sin2q$~d21!@k212~k•q!#22~k•q!24k2cos2q%.
~5.12!

Substituting these expressions along with the ot
needed information from Eqs.~5.2! and~5.3! and the relation
ep5np2 into Eq. ~4.41b! gives

diagram No. 22, A15@~gm«!2/8#~2p!22d

3E E dkdq,NkNq

k2sin4q

~k1q!2
,

A25@~d21!~gm«!2/8#~2p!22dE E dkdqNkNqsin2q;

~5.13!

diagram No. 31, 3A15@~gm«!2/4#~2p!22d

3E E dkdqNkNq

3
k2sin4q

k21q21~k•q!
,

9A25@~gm«!2/4#~2p!22dE E dkdqNkNq

3
sin2q$~d21!@k212~k•q!#22~k•q!24k2cos2q%

k21q21~k•q!
.

~5.14!

We note that in the coefficientsA1,2 for diagram No. 31, the
factor q2 from eq in the denominators cancels out with th
analogous factor in the numerators, while in the coeffici
A2 for diagram No. 22, a similar cancellation of the fact
(k1q)2 takes place.
05630
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The denominators in the integrals~5.13! and ~5.14! are
symmetrical with respect to the permutationk↔q. This al-
lows one to perform the analogous symmetrization in
numerators, which is equivalent to the replacementk2→(k2

1q2)/2 in the latter. Then the expressions simplify and
duce to linear combinations of the following standard in
grals:

H2p5~2p!22dE E dkdqNkNqsin2pq, p51,2,

~5.15!

h5~2p!22dE E dkdqNkNq~k•q!sin4q/~k1q!2,

~5.16!

h2p5~2p!22dE E dkdqNkNq~k•q!sin2pq/@k21q2

1~k•q!#, p51,2. ~5.17!

The coefficientsAi in Eqs.~5.13! and~5.14! are expressed
in terms of these integrals as follows:

diagram No. 22, A15@~gm«!2/8#@H4/22h#,

A25@~gm«!2/8#@~d21!H2#; ~5.18!

diagram No. 31, 3A15@~gm«!2/4#@H4/22h4/2#,

9A25@~gm«!2/4#@~d25!H2/212H413~d21!h2/222h4#.
~5.19!

These expressions along with Eq.~4.23a! for diagram No.
22 and Eq.~4.23b! for diagram No. 31 give the coefficient
Bi , then using Eqs.~4.35!, ~4.36a!, and~4.36b! one obtains
the corresponding quantitiesḠ(diagram No. 22) and
Ḡ(diagram No. 31); the answers are represented as lin
combinations of the standard integrals~5.15!–~5.17!.

The two-loop quantityḠ (2) also includes the contribution
from the factorizable diagram No. 41 with the symmet
coefficient 1/8; see Fig. 1. It reduces to the contraction of
vertex factorV1234 with the productT12T34 of two identical
one-loop blocks similar to diagram No. 21. In the notation
Eqs.~4.24!–~4.28! this contribution has the form

G5C V1234@B1w1w21B2w2d12#@B1w3w41B2w2d34#[FḠ,
~5.20!

whereB1,2 are the known coefficients for the one-loop di
gram No. 21~see Sec. V A! andC is an additional symmetry
coefficient; in the case at hand,C51/2. Let us explain its
origin. By definition, the quantitiesB1,2 for diagram No. 21
already include its symmetry coefficient 1/2@in the factorC
in Eq. ~4.38!#, which gives 1/4 for the product of two suc
blocks. Therefore, in order to obtain the correct symme
coefficient 1/8 for diagram No. 41, the additional coefficie
C51/2 should be included.
6-14
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Multiplying the expressions in the square brackets in E
~5.20! and taking into account the definition of the coef
cientski in Eq. ~4.36! gives

Ḡ~diagram No. 41!5@1/2#@k1B1
212k2B1B21k3B2

2#
~5.21!

with coefficientsk1,2,3 from Eq.~4.36c! and known quantities
B1,2 for the one-loop diagram No. 21. In what follows, th
same scheme will be used for the calculation of the con
butions of the three-loop factorizable diagrams Nos. 46,
61; the coefficientski from Eqs.~4.36d! and ~4.36e! will be
involved.

We have found all terms in the two-loop expression

Ḡ (2)5Ḡ~diagram No. 22!1Ḡ~diagram No. 31!

1Ḡ~diagram No. 41!. ~5.22!

Now Eq. ~4.9b! is used to determine the two-loop contrib
tion @ZF

21#2 in the renormalization constantZF
21 , with Ḡ (1)

from Eq. ~5.9!, Ḡ (2) from Eq. ~5.22!, and @ZF
21#1 from Eq.

~5.10!. It is also necessary to setm5m in all the diagrams of
Ḡ (1,2) in order to eliminate contributions with the logarithm
ln(m/m) ~they would be canceled with the contributions
the diagrams with self-energy insertions, which we alrea
omitted!.

All the quantities in Eq.~4.9b! are known explicitly, ex-
cept for the contributions of diagrams Nos. 22, 31, for wh
we only know the expressions of the coefficientsAi in terms
of the standard integrals~5.15!–~5.17!. In order to calculate
the quantity~4.9b!, we need only their divergent parts;1/«2

and 1/«, but for the three-loop calculation we shall also ne
the zero order in« ~constant! terms.

Calculation of these standard integrals is a separate
and will be discussed in the next section.

C. Calculation of the two-loop integrals Eqs.„5.15…–„5.17…

In this section we denotenk[k/k for any vectork, dnk is
the area element of the unitd-dimensional sphere an
^•••& is the averaging over the sphere. In particular,

E dkNk•••5E
m

` dk

k11«E dnk•••5SdE
m

` dk

k11«
^•••&

~5.23!

with Nk from Eq.~1.3!; Sd52pd/2/G(d/2) is the surface area
of the unit sphere.

For any two vectors with the angleq between them, the
following formulas will be useful:

a2n[^cos2nq&5
~2n21!!!

d~d12!•••~d12n22!
~5.24!

with n51,2, . . . ~obviously,a0[^1&51). From Eq.~5.24!
one easily obtains
05630
.
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^sin2qcos2nq&5
~d21!

~d12n!
a2n , ^sin4qcos2nq&

5
~d221!

~d12n!~d12n12!
a2n ~5.25!

with n50,1,2, . . . anda2n from Eq. ~5.24!.
In the notation introduced above, the integralsH2p in Eq.

~5.15! are written in the form

H2p5Cd
2E

m

` dk

k11«Em

` dq

q11«
^sin2pq&, p51,2. ~5.26!

Then Eq.~5.25! gives

H25Cd
2 m22«~d21!

d«2
, H45Cd

2 m22«~d221!

d~d12!«2
.

~5.27!

Now let us turn to the integralsh2p in Eq. ~5.17!. Expand-
ing their integrands in (k•q) gives

h2p5Cd
2(

l 50

`

~21! lE
m

` dk

k11«Em

` dq

q11« S kq

k21q2D l 11

3^sin2pqcosl 11q&. ~5.28!

The averagêsin2pqcosl11q& differs from zero only for oddl,
and the series in Eq.~5.28! can be written as

h2p52Cd
2(

n50

`

I n~m!^sin2pqcos2n12q& ~5.29!

with the integral

I n~m![E
m

` dk

k11«Em

` dq

q11« S kq

k21q2D 2n12

5m22«I n~1!.

~5.30!

Using the identity

I n~m!52
1

2«
DmI n~m!, Dm[m]/]m, ~5.31!

which follows from the last equality in Eq.~5.30!, the inte-
gral I n(m) can be represented in the form

I n~m!5
m22«

« E
1

` dk

k11« S k

k211
D 2n12

, ~5.32!

where the number of integrations is reduced and the pol
« is isolated explicitly. Expanding the integrand in Eq.~5.32!
in « and neglecting the terms of orderO(«) and higher with
the desired accuracy we obtain
6-15
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I n~m!.m22«E
1

` dk k2n11

~k211!2n12
~«212 ln k!

5m22«
~n! !2

4~2n11!!
~«212Bn!, ~5.33!

where the quantitiesBn , needed only for the three-loop ca
culation, can be represented as finite sums,

Bn5 ln 21
~2n11!!

n! (
k50

n
~21!k@~1/2!n1k21#

k! ~n2k!! ~n1k11!2
.

~5.34!

For the integralsh2p in Eq. ~5.17! this gives

h25m22«Cd
2~d21! (

n50

`
n!22n22

d~d12!•••~d12n12!

3~2«211Bn!; ~5.35a!

h45m22«Cd
2~d221! (

n50

`
n!22n22

d~d12!•••~d12n14!

3~2«211Bn!. ~5.35b!

Expanding the integrand in Eq.~5.16! in 2(k•q) and pro-
ceeding as above forh2p , we obtain an analogous expressi
for the integralh,

h5m22«Cd
2~d221! (

n50

`
n!2n21

d~d12!•••~d12n14!

3~2«211Bn!. ~5.35c!

The O(«21) terms in Eqs.~5.35! can be expressed i
terms of the hypergeometric series~see, e.g.,@27#!

F~a,b;c;z![11
ab

c
z1

a~a11!b~b11!

c~c11!

z2

2!
1•••

~5.36!

as follows:

h25
m22«Cd

2~d21!

4d~d12!
@2«21F~1,1;d/212;1/4!

1~d12!C2~d!#, ~5.37a!

h45
m22«Cd

2~d221!

4d~d12!~d14!
@2«21F~1,1;d/213;1/4!

1~d14!C4~d!#, ~5.37b!

h5
m22«Cd

2~d221!

2d~d12!~d14!
@2«21F~1,1;d/213;1!

1~d14!C~d!#, ~5.37c!

and for theO(1) terms one has
05630
C2~d!5 (
n50

`
n!B n

4n~d/211!•••~d/2111n!
, ~5.38a!

C4~d!5 (
n50

`
n!B n

4n~d/212!•••~d/2121n!
5C2~d12!,

~5.38b!

C~d!5 (
n50

`
n!Bn

~d/212!•••~d/2121n!
. ~5.38c!

It is worth noting that the series entering into Eqs.~5.37! and
~5.38! are convergent; this fact is nontrivial forh since uzu
51 is the convergence radius for the corresponding seri

For F(•••) in Eq. ~5.37c! one hasF(1,1;d/213;1)5(d
14)/(d12) for anyd, while the expressions forF(•••) in
Eqs.~5.37a! and~5.37b! simplify only for integerd; see@27#.
In particular, ford52 andd53 one has

d52, F~1,1;d/212;1/4!58@23ln~4/3!11#.1.0956,

F~1,1;d/213;1/4!56@18ln~4/3!25#.1.0696,

C2.0.3671, C4.0.2411, C.0.2917; ~5.39a!

d53, F~1,1;d/212;1/4!510~pA3216/3!.1.0806,

F~1,1;d/213;1/4!514~215pA3182!/5.1.0613,

C2.0.2912, C4.0.2056, C.0.2412; ~5.39b!

and for the other integerd analogous expressions can b
obtained from the recurrent relation

3F~1,1;d/212;1/4!1~d12!F~1,1;d/213;1/4!/~d14!54
~5.40!

valid for all d. In Eq. ~5.39! we also included the numerica
values for the coefficientsC2,4 andC obtained from the series
~5.38!.

Substituting all these expressions for the integrals i
Eqs.~5.18! and ~5.19! gives the final answers for the coeffi
cientsAi of the diagrams Nos. 22, 31,

diagram No. 22, A15
u2~m/m!2«~d221!

16d~d12!

3F 1

«2
1

1

~d12!«
2

1

2
C~d!G ,

A25
u2~m/m!2«~d21!2

16d«2
; ~5.41!

diagram No. 31, A15
u2~m/m!2«

24d~d12! F 1

«2
1

F~1,1;d/213;1/4!

4~d14!«

2
1

8
C4~d!G ,
6-16
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A25
u2~m/m!2«~d21!

24d~d12! F ~d22!~d13!

3«2

2
~d21!F~1,1;d/212;1/4!

4«

1
~d11!F~1,1;d/213;1/4!

3~d14!«
1

1

8
~d21!~d12!C2~d!

2
1

6
~d11!C4~d!G ~5.42!

with F(•••) from Eq. ~5.36! and C,C2,4 from Eq. ~5.38!.
From these expressions, using the standard general sch
one obtains the contributions of the diagrams Nos. 22,
into Eq. ~5.22! and then the two-loop contribution@ZF

21#2

into the renormalization constantZF
21 , presented earlier in

Ref. @10#.

VI. THREE-LOOP APPROXIMATION

A. Scalarization of the three-loop diagrams

All the needed three-loop diagrams with the symme
coefficients are given in Fig. 1. Below we shall descri
them in more detail and give in a compact form the compl
05630
me,
1

y

e

set of relations that allow one to express the coefficientsAi
in Eq. ~4.20! for any given diagram in terms of the scal
integrals~4.41c!. We recall that all the external momenta
the diagrams are set equal to zero.

We begin with the normal~not factorizable! diagrams.
For these, the integration momentak, q, l are always as-
signed to the horizontal lineŝvv& in the following order:k
flows via the uppermost line,q flows via the middle line, and
l flows via the lowest line. Then in order to determine t
momenta for all lines in the diagram, it is sufficient to sho
~by an arrow! the chosen direction of the momentum in ea
line. The needed derivatives] on the lines are always im
plied ~for the one-loop and two-loop diagrams, they we
shown explicitly by dots in Fig. 2!. The numerical indices
1,2, . . . of theupper dots are always chosen to increase fr
the left to the right@like in Eq. ~4.17! and in the diagrams in
Fig. 2#; the positions of the letter indicesa,b, . . . in the
diagram are always shown explicitly. This information a
lows one to completely restore the configuration of the m
menta and the form of the index structures~4.39! for any
diagram.

Now we turn to the description of specific diagrams
this notation. For any diagram, we give the directions of
momenta, positions of the indicesa,b, . . . , andforms of all
cofactors in Eq.~4.38! in the same form as in Eqs.~5.1!–
~5.3!:
The two-ray diagram No. 23,

~6.1!

The three-ray normal diagrams,

~6.2!

For these, one has

diagram No. 32, C513131, fs5~ lPql!,

fE54e leq1 l~ek1eq1 l1ek1q1 l!,

Ī 5n2 with x5k,y5q1 l, a5Pk~q1 l!,

P5Pl @~x•a!50#; ~6.3!
6-17
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diagram No. 33, C513131, fs5@ lPk~q1 l!#,

fE52e l~eq1e l1eq1 l!~eq1ek1 l1ek1q1 l!,

Ī 5n2 with x5q, y5k1 l, a5Pql,

P5Pl @~x•a!50#; ~6.4!

diagram No. 34, C513131, fs5@qPk~q1 l!#,

fE52e l~eq1e l1eq1 l!~e l1ek1q1ek1q1 l!,

Ī 5n2 with x5 l, y5k1q, a5Pql,

P5Pl @Px50#; ~6.5!
05630
diagram No. 35, C513131, fs5~qPkl!,

fE52e l~eq1e l1eq2 l!~ek1q1ek1 l1eq2 l!,

Ī 5n2 with x5k1 l, y5q2 l, a5Pql, P5Pl .
~6.6!

The structureĪ 5n2 from Eq. ~4.39! is the same for all
these diagrams; the corresponding quantitiesĀi are deter-
mined by the general formula~4.43! in which the specific
values of the vectorsx,y,z,a and projectorsP for any given
diagram should be substituted from Eqs.~6.3!–~6.6!:
The four-ray normal diagrams,

~6.7!
For these, one has,

diagram No. 42, C513131, fs51,

fE52e l~eq1e l1eq1 l!~ek1eq1e l1ek1q1 l!,

Ī 5n3 with x5k, y5q, z5 l, a5Pk~q1 l!,

b5Pql, P5Pl

@~x•a!50,~y•b!50,Pz50#; ~6.8!

diagram No. 43, C51/23132, fs5~qPkl!,

fE54e l~eq1e l!~eq1e l1ek2q1ek1 l!,

Ī 5n4 with x5q, y5 l, z5k2q, P5Pl ,

P85Pq

@Py50,P8x50#; ~6.9!

diagram No. 44, C51/23~21!32, fs51,

fE52e l~eq1e l1e l2q!~ek1eq1ek1 l1e l2q!,
Ī 5n3 with x5k, y5q, z5 l2q, a5Pkl, b5Pql,

P5Pl

@~x•a!50, ~y•b!50, P~y1z!50#; ~6.10!

diagram No. 45, C513~21!31, fs51,

fE52e l~eq1e l1eq1 l!~ek1e l1eq2k1eq1 l!,

Ī 5n3 with x5k, y5 l, z5q2k, a5Pkq,

b5Pql, P5Pl

@~x•a!50, $~x1z!•b%50,Py50#. ~6.11!

Three diagrams have the index structureĪ 5n3 from Eq.
~4.39! and one diagram has the structureĪ 5n4; (x•a)50
for all the diagrams withĪ 5n3.

Below we give the expressions for the coefficientsĀi for
the structuresĪ 5n3,n4, analogous to Eqs.~4.42! and~4.43!.
6-18
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For Ī 5n3 from Eqs.~4.39! and ~4.40! using the relation (x•a)50 one obtains

12Ā15~xPx!@~y•a!~z•b!1~y•b!~z•a!#1~yPy!~z•a!~x•b!1~zPz!~x•b!~y•a!12~xPy!@~y•a!~z•b!1~z•a!$~x1y

1z!•b%#12~xPz!@~y•b!~z•a!1~y•a!$~x1y1z!•b%#12~yPz!~x•b!@~z1y!•a#;

72Ā25U1$~d21!@~y•a!~z•b!1~y•b!~z•a!#12~yPa!~z•b!12~zPa!~y•b!12~yPb!~z•a!12~zPb!~y•a!

12~yPz!~a•b!%1U2$~d21!~z•a!~x•b!12~xPa!~z•b!12~zPa!~x•b!12~xPb!~z•a!12~xPz!~a•b!%

1U3$~d21!~y•a!~x•b!12~xPa!~y•b!12~yPa!~x•b!12~xPb!~y•a!12~xPy!~a•b!%12~d21!@~z•a!

3~z•b!~x•y!1~y•a!~y•b!~x•z!#12@~zPa!~z•b!~x•y!1~yPa!~y•b!~x•z!1~xPa!~x•b!~y•z!1~zPb!~z•a!

3~x•y!1~yPb!~y•a!~x•z!#12~a•b!@~xPx!~y•z!1~yPy!~x•z!1~zPz!~x•y!#;

9Ā35U4$~d21!~a•b!12~aPb!%. ~6.12!
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Here and below in Eq.~6.14!

U1[x212~x•y!12~x•z!, U2[y212~x•y!12~y•z!,

U3[z212~x•z!12~y•z!,

U4[x2~y•z!1y2~x•z!1z2~x•y!12~x•y!~x•z!12~x•y!

3~y•z!12~x•z!~y•z!. ~6.13!

For Ī 5n4 from Eq. ~4.39!, using the relationsPy50,
P8x50 in Eq. ~6.9! one obtains

6Ā15~xPx!~yP8z!12~xPz!~yP8z!1~xPz!~yP8y!,

36Ā25~d21!$U1~yP8z!1U2~xPz!1~xPx!~y•z!

1~yP8y!~x•z!1@z~P1P8!z#~x•y!%1

12$U1~yP8Pz!1U2~xPP8z!1U3~xPP8y!

1@z~PP81P8P!z#~x•y!%,

9Ā35U4$~d21!212 tr~PP8!% ~6.14!

with U1–U4 from Eq.~6.13!; tr(PP8) is the trace of a matrix
product.

Substituting the specific values for the vectors and pro
tors for any given diagram from Eqs.~6.8!–~6.11! into ex-
pressions~6.12!–~6.14! gives explicit expressions for th
corresponding coefficientsĀi . Then, using the additional in
formation from Eqs.~6.8!–~6.11! one obtains the desired ex
pressions for the coefficientsAi for any diagram in the form
of scalar integrals~4.41c!. All these simple but cumbersom
technical operations are easily performed by means o
computer.

Now let us turn to the factorizable diagrams Nos. 46,
61. Diagram No. 46 factorizes to a product of two bloc
Nos. 21, 22; diagram No. 51 factorizes to a product of
blocks Nos. 21, 31; diagram No. 61 factorizes to a produc
three blocks No. 21. Since the quantitiesBi for diagrams
05630
-

a

,

e
f

Nos. 21, 22 already include their own symmetry coefficie
1/2, we conclude that, in order to obtain the needed sym
try coefficient in Fig. 1 for diagrams Nos. 46, 51, an ad
tional symmetry coefficient@like C in Eq. ~5.20!# is not
needed, while for diagram No. 61 it should be taken to
1/6.

Therefore, taking into account Eqs.~4.18! and ~4.27!, we
obtain for diagrams Nos. 46, 51, 61,

diagram No. 46,G5V1234@B1w1w21B2w2d12#@B18w3w4

1B28w
2d34#, ~6.15a!

diagram No. 51,G5V12345@B1w1w21B2w2d12#

3@B18w3w4w51B28w
2d34w5#,

~6.15b!

diagram No. 61,G5@1/6#V123456@B1w1w21B2w2d12#

3@B1w3w41B2w2d34#@B1w5w6

1B2w2d56#, ~6.15c!

whereB1,2 are the known coefficients for diagram No. 2
B1,28 in Eq. ~6.15a! are the analogous coefficients for diagra
No. 22, andB1,28 in Eq. ~6.15b! are the coefficients for dia
gram No. 31.

Using the relations~4.36!, from Eqs.~6.15! one obtains

Ḡ ~diagram No. 46!5k1B1B181k2~B1B281B2B18!

1k3B2B28 ,

Ḡ ~diagram No. 51!5k1B1B181k2~B1B281B2B18!

1k3B2B28 ,

Ḡ ~diagram No. 61!5@1/6#@k1B1
313k2B1

2B213k3B1B2
2

1k4B2
3# ~6.16!

with the coefficientski known from Eq.~4.36c! for diagram
No. 46, from Eq.~4.36d! for diagram No. 51, and from Eq
6-19
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~4.36e! for diagram No. 61. The relations~6.16! give the
desired answers for the three-loop factorizable diagrams

B. Calculation of the three-loop integrals and anomalous
dimensions: General scheme

Substituting the specific values for the vectors and pro
tors, given in Eqs.~6.1!, ~6.3!–~6.6!, ~6.8!–~6.11! for all nor-
mal three-loop diagrams, into the general formulas~4.42!,
~4.43!, ~6.12!–~6.14! gives explicit expressions for the qua
tities Āi in Eq. ~4.41c! for any diagram in the form of poly-
nomials in the scalar products (k•q), (k• l), (q• l) and
moduli k,q,l of the vectorsk,q,l.

It is worth noting that for all the normal three-loop dia
grams, the productsfsĀi have the form of sums of mono
mials ink,q,l of order six. In the variables ‘‘moduli angles,
each of these monomials contains the factorl 2, which is
canceled out by the analogous factor in the energy deno
nator e l5n l 2 present in each of these diagrams. It is a
worth noting that these products involve the modulusk in the
power 2 or less~otherwise the integrals overk would be
divergent!.

In the three-loop diagrams, we only need the poles in«,
that is, the contributions of order«23, «22, and «21. The
following general scheme is used in their calculation.

~1! The integrands are expanded in the set of scalar p
ucts (k•q), (k• l), (q• l); the results are represented as
multiple series in these quantities.

~2! Then, the angular averaging^•••& is performed with
respect to the directions of the vectorsk,q,l, that is, the
following quantities are calculated:

Tn1n2n3
5^~k•q!n1~k• l!n2~q• l!n3& ~6.17!

with arbitrary integer exponentsni>0.
~3! The next step is the integration over the modulik,q,l .

All the needed integrals reduce to the form

E
1

` dk

k11«E1

` dq

q11«E1

` dl

l 11«

k2n1q2n2l 2n3

~k21q21 l 2!n4~q21 l 2!n5
,

~6.18!

where the integer exponentsni>0 satisfy the relationn1
1n21n35n41n5, so that the integrals contain only loga
rithmic UV divergencies for«→0. Only the pole parts are
extracted from the integrals~6.18!.

~4! The last step is the summation of the resulting ser
They have the forms of a double infinite series with the
efficients given byn-fold finite sums (n<5); the number of
terms in the latter increases rapidly with the order of
coefficient. This summation is the only operation that can
be performed exactly~analytically! and is therefore the only
source of errors in numerical coefficients in expressions
Eqs.~1.13!.

Of course, the straightforward but cumbersome operati
listed above have been performed with the aid of a compu

The first step, the expansion in the scalar produ
(k•q), (k• l), (q• l), contains some conceptual subtleties a
we shall discuss it in more detail. The problem is that
05630
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plain expansion of the integrands in the powers of the sc
products in some cases leads to a divergent series.

The nonpolynomial dependence of the integrands on
cosines of the angles appears only from the energy fac
fE

21 , whose explicit forms are given in Eqs.~6.1!, ~6.3!–
~6.6!, ~6.8!–~6.11!. For all the diagrams, the nontrivial fac
tors in fE have the formsq21 l 21const (q• l) and k21q2

1 l 21 some linear combination of all scalar products, and
the expansions in powers of the scalar products, the deno
nators will contain powers of the quantities (q21 l 2) and
(k21q21 l 2). Such expansions converge for all cofactors
fE

21 , which do not contain the ‘‘energy’’ek1q1 l with the
sum of all three momenta. The cofactors withek1q1 l require
special consideration. They are present in diagrams Nos
32, 33, 34, 42 and are proportional to the following facto

diagram No. 23,fE
21}ek1q1 l

21 }@Q12S#21,

diagram No. 32,fE
21}@ek1eq1 l1ek1q1 l#

21

}@Q1S1~q• l!#21,

diagram No. 33,fE
21}@eq1ek1 l1ek1q1 l#

21

}@Q1S1~k• l!#21,

diagram No. 34,fE
21}@e l1ek1q1ek1q1 l#

21

}@Q1S1~k•q!#21,

diagram No, 42,fE
21}@ek1eq1e l1ek1q1 l#

21

}@Q1S#21, ~6.19!

whereQ[k21q21 l 2 andS[(k•q)1(k• l)1(q• l).
From the obvious identities (k1q1 l)2>0, (k2q)21(k

2 l)21(q2 l)2>0, u(k•q)u<kq, u(k• l)u<kl, and u(q• l)u
<ql, it follows that

2Q/2<S<Q, u~k•q!u<Q/2, u~k• l!u<Q/2,

u~q• l!u<Q/2. ~6.20!

It then follows that the factor~6.19! in diagram No. 42
can be expanded in the powers of the ratioS/Q with uS/Qu
<1, while for No. 23 this is impossible: in the integratio
region, there is a subregion of the same dimension~namely,
33d) in which 2uSu.Q. This difficulty can be circum-
vented by means of the shift of the point around which
expansion is made in diagram No. 23,

@Q12S#215@3Q/21~4S2Q!/2#21

5@2/3Q# (
n50

`

@~124S/Q!/3#n. ~6.21!

The convergence of the series in Eq.~6.21! is ensured by the
inequality u(124S/Q)/3u<1, which follows from Eq.
~6.20!. The equality takes place only in th
(23d)-dimensional subregionk1q1 l50, which has zero
measure in the (33d)-dimensional integration region an
6-20
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does not spoil the convergence of the corresponding se
for the integral@similar considerations ensure the conve
gence of the series~5.35c! for the two-loop integralh#.

For the factor~6.19! in diagram No. 32 the following shift
can be used:

@Q1S1~q• l!#215$5Q/41@S1~q• l!2Q/4#%21

with the subsequent expansion in the powers of the ratio@S
1(q• l)2Q/4#/(5Q/4), whose modulus does not exce
unity owing to inequalities~6.20!. Similar expansions~with
obvious modifications! can be written for diagrams Nos. 33
34.

Such infinite series contain additional finite sums ori
nated from the powers of the expansion parameters, w
have the forms ‘‘constant1 linear combination of the scala
products.’’ It is clear that this summation should be p
formed in first, before all the other summations: only th
order of summations ensures the convergence of the se

Calculation of the angular integral~6.17! and momentum
integral ~6.18! is a separate task; it is discussed in the n
two sections. The results for the coefficientsAi for all the
normal three-loop diagrams are presented in the Appen
The «23 contributions in all diagrams have been found an
lytically for general space dimensionalityd ~in order to cal-
culate them, it is sufficient to neglect all the scalar produ
in the energy denominatorsfE), while the «22 and «21

parts have been found for the physical casesd52,3 and in
the larged limit; the results have been presented in Ref.@15#
~of course, this calculation can be made for any fixed giv
value ofd).

Now, using the standard scheme~see Sec. IV!, one finds
the three-loop contribution@ZF

21#3 in the expansion~4.7! for
the renormalization constantZF

21 . The anomalous dimensio
gF[gnl is given by the relationgF52b]uln ZF

21 ; see Eq.
~3.4!. Substituting Eqs.~2.17! and~4.7! into the last relation
expresses the anomalous dimension in the coeffici
@ZF

21#k . Within our accuracy one obtains

gF~u!5@«2u~d21!/2d#$@ZF
21#112@ZF

21#22@ZF
21#1

2

13@ZF
21#323@ZF

21#1@ZF
21#21@ZF

21#1
3%. ~6.22!

Substituting the known expressions for@ZF
21#k into Eq.

~6.22! gives the anomalous dimensiongF(u) to orderu3.
Since the quantitygF is UV finite, that is, finite at«50,

the pole parts must cancel each other in Eq.~6.22!. This
implies some exact relations between the senior poles in
quantities@ZF

21#k with k>2 («22 in @ZF
21#2 and«22, «23 in

@ZF
21#3) and the«21 parts of the previous orders inu. Such

relations provide an additional possibility to control the a
sence of calculational errors. In fact, the knowledge of sen
poles («2k with k>2) is needed only to check this cance
lation; the nonvanishing contributions in Eq.~6.22! are com-
pletely determined by the«21 terms in the quantities
@ZF

21#k . In the MS scheme, the anomalous dimensiongF(u)
appears independent of«; this is a consequence of the rel
tion ZF511 only poles in«.
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Finally, the relation~3.4! with u* from Eq. ~2.18! gives
the O(«3) results for the critical dimensions presented
Ref. @15# and Eqs.~1.13!.

C. Angular integrations in the three-loop diagrams

The two-loop integrals~4.41b! involve only two vectorsk
andq and one angleq between them, so that the procedu
of the angular averaging reduces there to the only stand
formula~5.24!. The three-loop integrals~4.41c! involve three
vectorsk, q, andl and three angles between them, so that
calculation of the quantities~6.17! is not all that simple.
Below we present the results of this calculation.

Obviously, the quantity~6.17! differs from zero only if all
the three numbersn1,2,3 are simultaneously even or odd. It
also clear that the quantity~6.17! is symmetrical with respec
to any permutation of the exponentsn1,2,3, and with no loss
of generality it can be assumed thatn2 is the minimal expo-
nent,

n25min$n1 ,n2 ,n3% ~6.23!

@the notation in the formulas below is consistent with t
assumption~6.23!#.

The straightforward calculation~first, the averaging over
the direction of one momentum, sayk, and then the averag
ing over the angle between the two remaining vectorsq and
l) leads to the following result for the quantity~6.17!:

Tn1n2n3
5kn11n2qn11n3l n21n3T̄n1n2n3

, ~6.24!

where the moduli of the vectors are isolated explicitly, an

T̄n1n2n3
5an11n2

an21n3
K~n1 ,n2!T̃n1n2n3

~6.25!

with coefficientsa2n from Eq. ~5.24! and

K~n1 ,n2!5
2n2n1! @~n11n2!/2#!

~n11n2!! @~n12n2!/2#!

5
~n12n212!~n12n214!•••~n11n2!

~n111!~n112!•••~n11n2!
,

~6.26!

T̃n1n2n3
5 (

k50

n2/2

Yk ,

Yk5
222kn2! @~n12n2!/2#!an21n322k

k! ~n222k!! @~n12n2!/21k#!an21n3

. ~6.27!

We recall that the numbersn1,2,3 in these expressions hav
the same parity, and thatn2 is the minimal one according to
Eq. ~6.23!. The upper limit in the sum~6.27! for odd n2 is
understood as the integer part ofn2/2.

The following special values and recurrent relations
the quantityK in Eq. ~6.26! are useful:

K~m,0!5K~m,1!51, K~m,m!5m!/ ~2m21!!!,
6-21
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K~m11,m11!/K~m,m!5~m11!/~2m11!,

K~m12,n!/K~m,n!5~m11!~m12!/~m2n12!

3~m1n11!. ~6.28!

For the termsYk in the sum~6.27! one has

Y051,

Yk11 /Yk5
~n222k!~n222k21!~d1n21n322k22!

2~k11!~n12n212k12!~n21n322k21!
.

~6.29!

Using these relations, the quantities~6.26! and ~6.27! are
easily calculated by a computer.

D. Modular integrations in the three-loop diagrams

Let us turn to the calculation of the three-loop integr
~6.18! over the modulik,q,l , which arise as coefficients in
the expansion of the quantitiesAi in Eq. ~4.41c! in the scalar
products (k•q),(k• l),(q• l); see Sec. VI B. For the complet
three-loop calculation, it is sufficient to know some spec
cases of the general integral~6.18!, which we denoteI 1–I 9
in what follows. Below we give the explicit answers fo
these intergals, with the precise specification of the indi
n1–n5, and then turn to the derivation. Only the pole pa
«23, «22, and «21 of these integrals are given, which
sufficient for the calculation of the quantitiesAi within our
accuracy. We shall use the notation

I $F%[E
1

` dk

k11«E1

` dq

q11«E1

` dl

l 11«
F ~6.30!

for any function F5F(k,q,l ). The integralsI 1–I 9 are as
follows:

I 1[I H k2n1q2n2l 2n3

~k21q21 l 2!n4~q21 l 2!n5
J

5
~n121!! ~n221!! ~n321!! ~n42n121!!

12« ~n421!! ~n21n321!!
~6.31!

with n11n21n35n41n5 , n4.n1 , n1,2,3,4.0, andn5>0;

I 2[I H q2n2l 2n3

~k21q21 l 2!n4~q21 l 2!n5
J

5
~n221!! ~n321!!

12~n21n321!! F 1

«2
1

1

« S (
k51

n21n321
1

k
2 (

k51

n421
1

k
2

1

2

3 (
k51

n221
1

k
2

1

2 (
k51

n321
1

kD G ~6.32!

with n21n35n41n5 , n2,3,4.0, andn5>0 @in Eq. ~6.32!
and all the formulas below, any sum with the upper lim
lesser than the lower one is understood as equal to zero#;
05630
l

s

t

I 3[I H k2n1q2n2

~k21q21 l 2!n4
J

5
~n121!! ~n221!!

12~n421!! F 1

«2
2

1

2« S (
k51

n121
1

k
1 (

k51

n221
1

kD G
~6.33!

with n11n25n4 andn1,2.0;

I 4[I H k2n1q2n2

~k21q21 l 2!n4~q21 l 2!
J

5
~n121!! ~n222!!

12«~n421!! F 1

«2
2

1

2«

3H 2

~n221!
1 (

k51

n121
1

k
1 (

k51

n222
1

kJ G ~6.34!

with n11n25n411, n1.0, andn2.1;

I 5[I H k2

~k21q21 l 2!
S ql

q21 l 2D 2nJ
5

@~n21!! #2

12~2n21!! F 2

«2
2

1

« S 3Bn211 (
k5n

2n21
1

kD G ~6.35!

with n.0 andBn from Eq. ~5.34!;

I 6[I H k2q2(n11)l 2n

~k21q21 l 2!~q21 l 2!2n11J 5
1

2
I 5 ; ~6.36!

I 7[I H k2

k21q21 l 2J 5
1

3«3
; ~6.37!

I 8[I H k2q2

~k21q21 l 2!~q21 l 2!
J 5

1

6«3
; ~6.38!

I 9[I H q4

~k21q21 l 2!~q21 l 2!
J 5

1

3«3
2

1

12«2
2

1

12«
.

~6.39!

Now let us turn to the derivation of expressions~6.31!–
~6.39!. The integralsI 1,2 can be obtained from the generatio
function

R~a,b;m![E
m

` dk

k11«Em

` dr

r112«

r2

~ak21br2!

5
m23«

6b F 1

«2
1

1

«
ln~b/a!1O~1!G . ~6.40!

We shall also need the first terms of the« expansion of the
integral
6-22
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J~p,q![E
0

p/2

dw~cosw!2p212«~sinw!2q212«

5
G~p2«/2!G~q2«/2!

2G~p1q2«!

5
G~p!G~q!

2G~p1q! H 11«Fc~p1q!2
1

2
c~p!2

1

2
c~q!G J

1O~«2!

5
~p21!! ~q21!!

2~p1q21!! F11«S (
k51

p1q21
1

k
2

1

2 (
k51

p21
1

k

2
1

2 (
k51

q21
1

kD G1O~«2!, ~6.41!

where G(z) is the Euler gamma function andc(z)
5d ln G(z)/dz.

The calculation of the quantity R[R(a,b;m)
5m23«R(a,b;1) is similar to the derivation of Eq.~5.33!.
The operationDm[m]/]m is applied to the double integra
in Eq. ~6.40!, which reduces it to the sum of two sing
integrals and explicitly isolates the pole factor«21,

R52
1

3«
DmR

5
m23«

3« F E
1

`

dk
1

k11«~ak21b!
1E

1

` dr

r112«

r2

~a1br2!
G .

Now one can set«50 in the integral overk ~it remains finite
at «50). The pole in« in the integral overr comes from
larger and it can be isolated explicitly,

E
1

` dr

r112«

r2

~a1br2!
5

1

bE1

` dr

r112«
2

a

bE1

` dr

r112«

1

~a1br2!

5
1

2b«
2

a

bE1

` dr

r~a1br2!
1O~«!,

which immediately leads to the answer~6.40!.
In the integralI 1 the pole contribution comes from th

part of the integration region where all three momentak,q,l
simultaneously tend to infinity, and inI 2 there is also a pole
contribution coming from the subregion whereq,l simulta-
neously tend to infinity at fixed finitek. This means that the
pole parts of the integralsI 1,2 are not affected if one change
to the polar coordinatesr, w (q5r cosw, l 5r sinw) with
the integration region 0<w<p/2, 1<r,`, that is, the fol-
lowing replacement is performed:

E
1

`

dqE
1

`

dl•••→E
0

p/2

dwE
1

`

rdr•••.

The integration regions in these two expressions are
identical, but the values of integrals differ only by an une
sential contribution, finite at«→0. For I 1 this gives
05630
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I 15E
0

p/2

dw~cosw!2n2212«~sinw!2n3212«

3E
1

` dk

k11«E1

` dr

r112«

k2n1r2n422n1

~k21r2!n4
.

This integral can be expressed usingJ(p,q) from Eq. ~6.41!
and the derivative of the generating functionR(a,b;m) from
Eq. ~6.40! as follows:

I 15@~n421!! #21J~n2 ,n3!~2]a!n1

~2]b!n42n121R~a,b;1!ua5b51 ~6.42!

with ]a5]/]a, ]b5]/]b, which immediately leads to the
answer~6.31!. Note that the«22 contribution inR depends
only on b @see Eq.~6.40!# and therefore vanishes in th
above expression owing to the differentiation with respec
a ~we recall thatn1.0 for I 1). Although the integralI 2 is
formally given by expression~6.42! with n150,

I 25@~n421!! #21J~n2 ,n3!~2]b!n421R~1,b;1!ub51 ,
~6.43!

the «22 part of the function~6.40! survives in Eq.~6.43!
owing to the absense of the derivative]a , so that theO(«)
contributions should be taken into account in the integ
~6.41!. This explains the sharp difference between the fi
expressions~6.31! and ~6.32! for the integralsI 1 and I 2.

The relations~6.33!–~6.36! follow easily from Eqs.~6.31!
and ~6.32!. The result~6.33! for I 3 is obtained from Eq.
~6.32! at n550 using the symmetries of the integrand. In
turn, the result~6.34! for I 4 follows from Eqs.~6.31! and
~6.33! if the obvious identity q2n2/(q21 l 2)5q2(n221)

2q2(n221)l 2/(q21 l 2) is substituted on its left-hand side
The result~6.35! for I 5 is obtained using the substitutio
k2/(k21q21 l 2)512(q21 l 2)/(k21q21 l 2): in the first
term, the integral overk is trivial and the remaining integra
tions overq,l are performed using Eqs.~5.30!, ~5.33!, and
~5.34!, while the second term reduces toI 2. The integralI 6 in
Eq. ~6.36! reduces toI 5 after the symmetrization of the inte
grand with respect toq,l .

The results~6.37! and~6.38! follow from the obvious re-
lation I $1%5«23 in Eq. ~6.30! after the symmetrization o
the integrands with respect tok,q,l . The last relation~6.39!
is obtained using the substitutionq2/(q21 l 2)512 l 2/(q2

1 l 2): the first term coincides withI 7 and the second one i
given by I 2 with n25n35n45n551.

E. Anomalous exponents at larged

In this section, we shall briefly discuss the behavior of t
coefficients Dnl

(k) in the expansion~1.10! for d→`. The
model ~1.1!–~1.3! has no finite upper critical dimension
above which the anomalous scaling vanishes. It disapp
for infinite d @28#, but reveals itself in theO(1/d) approxi-
mation @6#. This fact confirms the relevance of the larged
expansions for the issue of anomalous scaling; see also R
@29,30# for the discussion of the Navier-Stokes problem.
6-23
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FIG. 3. Anomalous dimensiong[g22* for d53 ~a! andd52 ~b!–~d!. Dashed line: exact solution by Refs.@6,31#. Solid lines in~a! and
~b!: first, third, and second approximations of the plain« expansion~from above to below!. Solid lines in ~c!: first, third, and second
approximations of the improvedx expansion~from above to below; the third approximation is practically indistinguishable from the ex
solution for all 0,«,2). Solid lines in~d!: first, second, and third approximations of the inverseg expansion~from above to below!.
r

ly
i

.

d

r
r

p
ve

os-

ies

lyti-

s

n

e
the

e

the

e
e

ex-

r

ing
It follows from Eqs. ~5.24! that for d→`, the angular
averagesa2n[^cos2nq& behave asa2n}d2n ~each additional
factor cos2q introduces additional smallness in 1/d). Then
from Eqs.~6.24!–~6.27! for the averages~6.17!, one obtains
Tn1n2n3

}d2(n11n21n3)/2 for n1,2,3 even and Tn1n2n3

}d2(n11n21n311)/2 for n1,2,3 odd. This means that, in orde
to find the behavior of the coefficientsAi for larged to any
given finite order in 1/d, one needs to take into account on
finite number of terms in the expansion of the integrands
Eq. ~4.37b! in the scalar product (k•q), and integrands in Eq
~4.37c! in the set of scalar products (k•q), (k• l), (q• l).

The d dependence of the coefficientDnl
(1) in Eq. ~1.10! is

known from Eq.~1.11!, while the quantitiesDnl
(2) , Dnl

(3) can
be found as a series in 1/d to any given order as explaine
above. For generaln and l to order 1/d2, we have obtained

Dnl5«@2n~n22!~122/d!/2d1~ l /2!~122/d1 l /d12/d2!#

13«2~n22!~n2 l !/4d21«3~n2 l !@1.749 88~n22!

20.624 916l #/d21O~«4!. ~6.44!

Note that the«2 and «3 contributions decay ford→`
faster than 1/d in agreement with theO(1/d) result obtained
in Ref. @6# for Dn0. Moreover, from Eq.~6.44! it follows that
the leadingO(1/d2) terms in these contributions vanish fo
n5 l , so that the decay atd→` becomes even faster. Fo
n5 l we have obtained

Dnn5«n/21n~n21!$«/~d21!~d12!2«2@11~2n

27!/d#/d32«3~3n28!/2d4%1O~«4! ~6.45!

with the accuracy ofO(1/d4).

VII. CONVERGENCE OF THE « EXPANSION, INVERSE «
EXPANSION, AND COMPARISON WITH

NONPERTURBATIVE RESULTS

An important issue that can be discussed on the exam
of the rapid-change model is that of the nature and con
05630
n

le
r-

gence of« expansions in models of turbulence and the p
sibility of their extrapolation to finite values of«;1. The
knowledge of the three terms of the« expansion in model
~1.1!–~1.3! allows one to discuss its convergence propert
and to obtain improved predictions for finite«, in reasonable
agreement with the existing nonperturbative results: ana
cal solution of the zero-mode equations forn52 @6#, nu-
merical solutions forn53 @7#, and numerical experiment
for n54 @23,24# andn56 @25#.

In Figs. 3~a! and 3~b!, we show the anomalous dimensio
g[g22* [g22(u* ) for d53 ~a! and 2~b! in theO(«), O(«3),
andO(«2) approximations~from above to below!; the latter
two obtained as simple sums of two and three terms of th«
expansion, respectively. The dashed line corresponds to
exact solution by Ref.@6#; see also Ref.@31# for the special
casesd52 and 3. Analogous diagrams for the casesn53,
l 51 andn54, l 50 can be found in Ref.@15#.

All these figures show that the agreement between th«
expansion and nonperturbative results for small« improves
when the higher-order terms are taken into account, but
deviation becomes remarkable for«;1 and decreasingd.
Furthermore, the convergence of the« series appears mor
irregular for d52, while the forms of the nonperturbativ
results are not much affected by the choice ofd.

Such behavior can be naturally understood by the
ample of the exact analytical result forg[g22* @6#, which can
be written in the form

2g52~d121«!1A~«1«1!~«1«2!,

«65@d21d126A8d~d11! #/~d21! ~7.1!

with «1«25(d12)2. It is useful to rewrite the smalle
quantity«2 in the form

«25~d21!$11@113d1A8d~d11!#21%. ~7.2!

From these expressions it follows that the correspond
« expansion has the finite radius of convergence«2 , ranging
6-24
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from 0 to ` when d varies from 1 to` ~in particular,«2

.1.1, «1.14.5 for d52, and «2.2.1, «1.11.9 for d
53). Hence, the naive summation of the« expansion forg
works only in the interval«,«2 , which decreases almos
linearly with (d21). Since the singularity in Eq.~7.1! oc-
curs for negative«, it affects strongly the convergence of th
« expansion but is not ‘‘visible’’ in the form of the exac
curve for positive«, in contrast with the singularities occu
ring at «52 in higher-order critical dimensions@7,8,23,24#.

Therefore, in order to recover the behavior ofg from its «
series for larger«, it is necessary to isolate explicitly th
singularity at«52«2 in Eq. ~7.1!, thus changing it to a kind
of improved « expansion, whose radius of convergence
determined by a more distant singularity. This can be do
for example, by introducing the new expansion parametex
5A«1«22A«2, that is, «5x212xA«2. Then Eq. ~7.1!
can be written in the form

2g52~d1212xA«21x2!1~x1A«2!

3Ax212xA«21«1. ~7.3!

The convergence radius of the expansion inx is found from
the equationx212xA«21«150 with the solutionsx65
2A«26 i A«12«2 and is therefore equal toux6u5A«1.
For positivex and«, this corresponds to the convergence
0,x,A«1 or, equivalently, 0,«,«112A«2«15«1

12(d12).
The improvement of the convergence is illustrated by F

3~c!, where the exact exponentg for d52 is shown as a
function of« along with its first (x), second (x andx2), and
third (x, x2 andx3) orders of the improvedx expansion, in
which the variablex is also expressed as a function of«. One
can see that the convergence of thex expansion appears mor
regular and that its third-order approximation is hardly d
tinguishable from the exact result for all 0,«,2 ~for d
53, the agreement is even better and for this reason is
shown!. It should be stressed that it was not the existence
the exact solution or explicit form of the substitutionx(«)
that was crucial for the improvement but the knowledge
05630
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the character and location of the singularity, which det
mines the convergence properties of the plain« expansion.

The difference with the models of critical phenomen
where« series are always asymptotical, can be traced bac
the fact that in the rapid-change models, there is no facto
growth of the number of diagrams in higher orders of t
perturbation theory. The divergence ford→1 is naturally
explained by the fact that the transverse vector field does
exist in one dimension. We also recall that the RG fix
point diverges atd51, see Eq.~2.18!, so that the coefficients
of the « series diverge for all dimensionsDnl .

It is then natural to assume that the« series for allDnl
also have finite radii of convergence with the behavior sim
lar to that of«2 in Eq. ~7.2!. Therefore, in order to improve
their convergence and to obtain reasonable predictions
finite values of«, one should augment plain« expansions by
the information about the character of the singularities a
their location in the complex« plane. Such information can
be extracted from the asymptotical behavior of the coe
cientsDnl

(k) in Eq. ~1.10! at largek. To our knowledge, the
largek behavior of the« series remains an open problem f

FIG. 4. Anomalous dimensiong[g31* for d53 ~left! and d
52 ~right!: theO(«) approximation, the third-order approximatio
of the inverseg expansion, and the third-order approximation of t
plain « expansion~from above to below!. Dashed line: numerica
solution by Refs.@7#.
n

FIG. 5. Critical dimensionsDn for d53: n56 ~a! andn54 ~b,c!. Dots connected by dashed lines: numerical simulations by Refs.@25#

(n56) and@23,24# (n54). Solid lines in~a,b!: theO(«) slope, third-order approximation of theg expansion, and third-order approximatio
of the plain« expansion~from above to below!. Solid lines in~c!: approximations forn54, obtained using the interpolation formula~7.5!
with p51 ~upper curve! andp53 ~lower curve!.
6-25
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TABLE I. CoefficientsAi
(1,2) for d52.

Diagram No.
A1

(2)

~units of 1023)
A1

(1)

~units of 1023)
A2

(2)

~units of 1023)
A2

(1)

~units of 1023)
A3

(2)

~units of 1023)
A3

(1)

~units of 1023)

23 0.23875 20.06103 0 0
32 20.56396 0.32532 0.49056 20.56645
33 1.11953 20.49834 0.93382 21.04911
34 21.05470 20.12495 0.2434 20.5770
35 20.41468 0.30671 20.63626 0.22330
42 20.00053 20.11026 0.06564 20.16222 20.54061 0.32914
43 0.02902 0.00249 0.03161 20.00715 20.33590 0.07208
44 20.03113 20.01477 0.03350 20.00286 20.19626 0.21410
45 20.26802 0.26530 20.02352 0.03554 0.88599 20.88934
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any dynamical model; the instanton analysis developed
Refs. @32# has mostly been concentrated on the behavio
the exponents in the limitn→`. One can hope that th
implementation of the instanton calculus within the R
framework will give the solution of this important problem

It turns out, however, that certain elementary consid
ations allow one to improve the convergence of the« series
and, at the same time, to achieve a better agreement with
nonperturbative results. Let us explain the idea of the
provement by the example of the exact solution~7.1!. We
express« as a function of the exponentg using Eq.~7.1! and
expand the right-hand side of the resulting exact relation

«5g ~d21!~d121g!/@22g~d21!# ~7.4!

in g; this gives the ‘‘inverseg expansion.’’ It is easy to see
that, for «;1 and physical dimensionsd52 and 3, the re-
spective values ofg lie within the region of convergence o
the inverted series:g,2/(d21). The improvement of the
convergence is also seen from Fig. 3~d!, where the exponen
g5g22* for d52 is shown as a function of« along with the
first (g), second (g and g2), and third (g, g2, and g3)
orders of theg expansion, expressed in the original variab
«: the approximate curves approach the exact curve from
same side and represent the exact result~7.1! much better
than the corresponding approximations of the plain« expan-
sion. The improvement is even better ford53.

A simple explanation of the improvement follows. Th
convergence radius for the direct« series is determined b
the singularity on the right-hand side of Eq.~7.1!, closest to
05630
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r-
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the origin, that is,«c52«2 . This square-rootsingularity
disappears in the inverse relation~7.4!, that is, the depen-
dence of« on g in the vicinity of the corresponding poin
2gc52d222«c52d221«2 becomes analytic. This
would also happen for any singularity of the formg2gc
}(«2«c)

1/k with any integerk>0.
We assume that these features are also typical to

higher-order dimensionsDnl and construct the correspondin
g expansions. It is important here thatg[gnl5O(«), so that
there is a one-to-one correspondence between these tw
pansions and three terms of theg expansion can be immedi
ately obtained from Eqs.~1.7!, ~1.12!, and ~1.13!. This
simple procedure leads to a remarkable improvement of
convergence and, at the same time, the agreement with
numerical results, as is easily seen from Figs. 4 and 5.

In Fig. 4, we show the anomalous dimensiong[g31* for
d53 ~left! and d52 ~right!: the O(«) approximation, the
third-order approximation of the inverseg expansion, and
the third-order approximation of the plain« expansion~from
above to below!; the dashed lines represent the exact num
cal solution by Refs.@7# (g5l23 in the notation of@7#!.

In Figs. 5~a! and 5~b!, we show the quantitiesDn[Dn0 in
three dimensions forn56 ~a! andn54 ~b!: theO(«) slope,
the third-order approximation of theg expansion, and the
third-order approximation of the plain« expansion~from
above to below!; the dots connected by dashed lines rep
sent the results of the numerical simulations by Refs.@25#
(n56) and@23,24# (n54).

In all these cases, the improvement in the agreement w
nonperturbative results is obvious. It should be emphasiz
TABLE II. CoefficientsAi
(1,2) for d53.

Diagram No.
A1

(2)

~units of 1023)
A1

(1)

~units of 1023)
A2

(2)

~units of 1023)
A2

(1)

~units of 1023)
A3

(2)

~units of 1023)
A3

(1)

~units of 1023)

23 1.03775 20.14683 0 0
32 20.52289 0.39815 0.21884 20.50345
33 1.57028 0.00156 1.56822 20.76955
34 21.64375 20.82315 20.43185 21.46450
35 20.43289 0.51544 21.07015 0.37916
42 20.07198 20.08409 0.02952 20.22968 20.83453 0.37471
43 0.02808 0.00152 0.03587 20.01186 20.62532 0.07298
44 20.07726 0.01392 0.00504 0.02341 20.36121 0.37991
45 20.33881 0.33509 20.10389 0.11756 0.94431 20.95923
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TABLE III. Coefficientsai(d) for generald.

Diagram No. a1(d) a2(d) a3(d)

23 9(d11)(2d212d25) 27(d21)2(d12)2

32 6(d11)(d21d23) 2(d413d323d227d110)
33 212(d11) 24(d212d22)
34 3(d11)(3d213d28) 3d418d3213d2222d132
35 212(d11) 24(d212d22)
42 3(d11)(d21d28)/4 (d416d315d2216d132)/8 24(d212d22)
43 26(d11) (d31d224d18)/2 d414d31d226d18
44 26(d11) (d31d224d18)/2 d414d31d226d18
45 3(d11)(d21d28)/4 (d416d315d2216d132)/8 24(d212d22)
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however, that even the plain« expansion captures som
qualitative features of the dimensionsDn established in the
numerical simulations@23–25#: the quantityuDnu increases
with «, achieves a maximum at some point inside the inter
0,«,2, and then decreases to zero; the height of the m
mum increases and its position moves to the left asn grows
from 4 to 6 ord decreases from 3 to 2 (z2n2nz25D2n in the
notation of Refs.@23–25#!.

It is no surprise, of course, that the disagreement betw
the perturbative and nonperturbative results becomes ra
strong for«.1; this can be explained, for example, by t
effect of the singularity at«52 in the exact solutions
@7,8,23,24# and by insufficient number of the known terms
the« andg series. For the casen54, d53, the situation can
be improved by an interpolation formula that takes into
count the first terms of the« expansion along with the as
ymptotical behavior of the dimensionD4 in the vicinity of
the opposite edge«52, known from the numerical simula
tion @23,24#: D452@0.06 (22«)11.13 (22«)3/2#. In par-
ticular, one can choose

D452@c1«1c2«21c3«31•••1ck«
k1•••#@0.06~22«!

11.13~22«!3/2#. ~7.5!

The first coefficientsc1–cp are determined by the require
ment that the expansion in« of the right-hand side of Eq
~7.5! reproduces the firstp terms of the« expansion forD4,
known from the RG~therefore, in practice one can only tak
p<3). The values of these coefficients, once determin
will not change if one takes a larger value ofp. The remain-
ing coefficientsck with k.p should be chosen to reproduc
the correct behavior at«→2. The simplest possibility is to
setck50 for all k.p11; then the last remaining coefficien
cp11 is unambiguously determined by the relation (2c1
14c218c31•••12p11cp11)51 @the O(22«) terms in
the expression in the first square brackets produce only
rections of order (22«)2 to the behavior of the right-hand o
Eq. ~7.5! side at«→2 and thus should be neglected#. This
procedure givesc150.241,c250.129 forp51 @upper curve
in Fig. 5~c!# and c150.241, c250.168, c3520.225, c4
50.103 forp53 ~lower curve!. One can see that the inclu
sion of the higher orders of the« expansion improves re
markably the agreement with the ‘‘experimental’’ results
Refs. @23,24#, shown in Fig. 5~c! by the dots connected b
05630
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f

dashed lines. It is also worth noting that the value of t
coefficient c2 for p51 ~determined by the behavior at«
→2) appears rather close to its value forp53 ~determined
by the « expansion!, which demonstrates the robustness
the results obtained by the above procedure.

VIII. CONCLUSION

To conclude, we have studied the inertial-range anom
lous scaling of a passive scalar quantity advected by
Gaussian velocity field, white in time and self-similar
space. The corresponding stochastic problem~1.1!–~1.3! can
be reformulated as a field theoretic model~2.1!, which al-
lows one to identify the anomalous exponents with the cr
cal dimensions of certain scalar and tensor composite op
tors built of the scalar gradients and to calculate them wit
the RG and OPE approach in the form of a regular pertur
tion expansion, similar to the well-known« expansion in the
RG theory of critical behavior.

Earlier, the anomalous exponents were presented to or
«2 @10–12,14# and «3 @15#; the main goal of the presen
paper has been the detailed explanation of the correspon
calculational techniques and derivation of the three-loop
sult, including the anisotropic sectors. Owing to the co
parative universality of the RG and OPE formalism, the
techniques can be applied to other models of dynamical c
cal phenomena and systems far from equilibrium: pass
advection by the non-Gaussian velocities with finite corre
tion time, stochastic Navier-Stokes equation, and so on;
Refs.@13,21,22#.

Another scope of the paper has been the discussion o
convergence properties of the« expansion and the possibilit
of its extrapolation to finite values of«. It was shown that the
knowledge of three terms allows one to obtain reasona
predictions for finite«;1; even the plain« expansion cap-
tures some subtle qualitative features of the anomalous
ponents established in numerical experiments.

We believe that in the framework of the renormalizati
group and operator product expansion, the concept of d
gerous composite operators and the« expansion will become
the necessary elements of the appearing theory of the ano
lous scaling in fully developed turbulence.
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APPENDIX: COEFFICIENTS Ai FOR THE THREE-LOOP
DIAGRAMS

Below we give the pole parts of the coefficientsAi from
Eq. ~4.20! for all normal ~not factorizable! three-loop dia-
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grams. We use the following notation:

Ai5u3~m/m!3«$Ai
(3)«231Ai

(2)«221Ai
(1)«21%,

Ai
(3)5~d21!ai~d!/432d2~d12!2.

CoefficientsAi
(1,2) are given in Tables I and II ford52 and

d53, respectively; coefficientsai(d) are given in Table III
for generald.
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